Index: binaries/data/mods/public/maps/random/rmgen/perlin.js =================================================================== --- binaries/data/mods/public/maps/random/rmgen/perlin.js +++ binaries/data/mods/public/maps/random/rmgen/perlin.js @@ -0,0 +1,310 @@ +/* + * A speed-improved perlin and simplex noise algorithms for 2D. + * + * Based on example code by Stefan Gustavson (stegu@itn.liu.se). + * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). + * Better rank ordering method by Stefan Gustavson in 2012. + * Converted to Javascript by Joseph Gentle. + * + * Version 2012-03-09 + * + * This code was placed in the public domain by its original author, + * Stefan Gustavson. You may use it as you see fit, but + * attribution is appreciated. + * + */ + +(function(global){ + var module = global.noise = {}; + + function Grad(x, y, z) { + this.x = x; this.y = y; this.z = z; + } + + Grad.prototype.dot2 = function(x, y) { + return this.x*x + this.y*y; + }; + + Grad.prototype.dot3 = function(x, y, z) { + return this.x*x + this.y*y + this.z*z; + }; + + var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0), + new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1), + new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)]; + + var p = [151,160,137,91,90,15, + 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, + 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, + 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, + 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, + 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, + 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, + 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, + 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, + 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, + 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, + 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, + 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180]; + // To remove the need for index wrapping, double the permutation table length + var perm = new Array(512); + var gradP = new Array(512); + + // This isn't a very good seeding function, but it works ok. It supports 2^16 + // different seed values. Write something better if you need more seeds. + module.seed = function(seed) { + if(seed > 0 && seed < 1) { + // Scale the seed out + seed *= 65536; + } + + seed = Math.floor(seed); + if(seed < 256) { + seed |= seed << 8; + } + + for(var i = 0; i < 256; i++) { + var v; + if (i & 1) { + v = p[i] ^ (seed & 255); + } else { + v = p[i] ^ ((seed>>8) & 255); + } + + perm[i] = perm[i + 256] = v; + gradP[i] = gradP[i + 256] = grad3[v % 12]; + } + }; + + module.seed(0); + + /* + for(var i=0; i<256; i++) { + perm[i] = perm[i + 256] = p[i]; + gradP[i] = gradP[i + 256] = grad3[perm[i] % 12]; + }*/ + + // Skewing and unskewing factors for 2, 3, and 4 dimensions + var F2 = 0.5*(Math.sqrt(3)-1); + var G2 = (3-Math.sqrt(3))/6; + + var F3 = 1/3; + var G3 = 1/6; + + // 2D simplex noise + module.simplex2 = function(xin, yin) { + var n0, n1, n2; // Noise contributions from the three corners + // Skew the input space to determine which simplex cell we're in + var s = (xin+yin)*F2; // Hairy factor for 2D + var i = Math.floor(xin+s); + var j = Math.floor(yin+s); + var t = (i+j)*G2; + var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed. + var y0 = yin-j+t; + // For the 2D case, the simplex shape is an equilateral triangle. + // Determine which simplex we are in. + var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords + if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1) + i1=1; j1=0; + } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1) + i1=0; j1=1; + } + // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and + // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where + // c = (3-sqrt(3))/6 + var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords + var y1 = y0 - j1 + G2; + var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords + var y2 = y0 - 1 + 2 * G2; + // Work out the hashed gradient indices of the three simplex corners + i &= 255; + j &= 255; + var gi0 = gradP[i+perm[j]]; + var gi1 = gradP[i+i1+perm[j+j1]]; + var gi2 = gradP[i+1+perm[j+1]]; + // Calculate the contribution from the three corners + var t0 = 0.5 - x0*x0-y0*y0; + if(t0<0) { + n0 = 0; + } else { + t0 *= t0; + n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient + } + var t1 = 0.5 - x1*x1-y1*y1; + if(t1<0) { + n1 = 0; + } else { + t1 *= t1; + n1 = t1 * t1 * gi1.dot2(x1, y1); + } + var t2 = 0.5 - x2*x2-y2*y2; + if(t2<0) { + n2 = 0; + } else { + t2 *= t2; + n2 = t2 * t2 * gi2.dot2(x2, y2); + } + // Add contributions from each corner to get the final noise value. + // The result is scaled to return values in the interval [-1,1]. + return 70 * (n0 + n1 + n2); + }; + + // 3D simplex noise + module.simplex3 = function(xin, yin, zin) { + var n0, n1, n2, n3; // Noise contributions from the four corners + + // Skew the input space to determine which simplex cell we're in + var s = (xin+yin+zin)*F3; // Hairy factor for 2D + var i = Math.floor(xin+s); + var j = Math.floor(yin+s); + var k = Math.floor(zin+s); + + var t = (i+j+k)*G3; + var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed. + var y0 = yin-j+t; + var z0 = zin-k+t; + + // For the 3D case, the simplex shape is a slightly irregular tetrahedron. + // Determine which simplex we are in. + var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords + var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords + if(x0 >= y0) { + if(y0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } + else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } + else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } + } else { + if(y0 < z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } + else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } + else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } + } + // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), + // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and + // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where + // c = 1/6. + var x1 = x0 - i1 + G3; // Offsets for second corner + var y1 = y0 - j1 + G3; + var z1 = z0 - k1 + G3; + + var x2 = x0 - i2 + 2 * G3; // Offsets for third corner + var y2 = y0 - j2 + 2 * G3; + var z2 = z0 - k2 + 2 * G3; + + var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner + var y3 = y0 - 1 + 3 * G3; + var z3 = z0 - 1 + 3 * G3; + + // Work out the hashed gradient indices of the four simplex corners + i &= 255; + j &= 255; + k &= 255; + var gi0 = gradP[i+ perm[j+ perm[k ]]]; + var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]]; + var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]]; + var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]]; + + // Calculate the contribution from the four corners + var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; + if(t0<0) { + n0 = 0; + } else { + t0 *= t0; + n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient + } + var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; + if(t1<0) { + n1 = 0; + } else { + t1 *= t1; + n1 = t1 * t1 * gi1.dot3(x1, y1, z1); + } + var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; + if(t2<0) { + n2 = 0; + } else { + t2 *= t2; + n2 = t2 * t2 * gi2.dot3(x2, y2, z2); + } + var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; + if(t3<0) { + n3 = 0; + } else { + t3 *= t3; + n3 = t3 * t3 * gi3.dot3(x3, y3, z3); + } + // Add contributions from each corner to get the final noise value. + // The result is scaled to return values in the interval [-1,1]. + return 32 * (n0 + n1 + n2 + n3); + + }; + + // ##### Perlin noise stuff + + function fade(t) { + return t*t*t*(t*(t*6-15)+10); + } + + function lerp(a, b, t) { + return (1-t)*a + t*b; + } + + // 2D Perlin Noise + module.perlin2 = function(x, y) { + // Find unit grid cell containing point + var X = Math.floor(x), Y = Math.floor(y); + // Get relative xy coordinates of point within that cell + x = x - X; y = y - Y; + // Wrap the integer cells at 255 (smaller integer period can be introduced here) + X = X & 255; Y = Y & 255; + + // Calculate noise contributions from each of the four corners + var n00 = gradP[X+perm[Y]].dot2(x, y); + var n01 = gradP[X+perm[Y+1]].dot2(x, y-1); + var n10 = gradP[X+1+perm[Y]].dot2(x-1, y); + var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1); + + // Compute the fade curve value for x + var u = fade(x); + + // Interpolate the four results + return lerp( + lerp(n00, n10, u), + lerp(n01, n11, u), + fade(y)); + }; + + // 3D Perlin Noise + module.perlin3 = function(x, y, z) { + // Find unit grid cell containing point + var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z); + // Get relative xyz coordinates of point within that cell + x = x - X; y = y - Y; z = z - Z; + // Wrap the integer cells at 255 (smaller integer period can be introduced here) + X = X & 255; Y = Y & 255; Z = Z & 255; + + // Calculate noise contributions from each of the eight corners + var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z); + var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1); + var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z); + var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1); + var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z); + var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1); + var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z); + var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1); + + // Compute the fade curve value for x, y, z + var u = fade(x); + var v = fade(y); + var w = fade(z); + + // Interpolate + return lerp( + lerp( + lerp(n000, n100, u), + lerp(n001, n101, u), w), + lerp( + lerp(n010, n110, u), + lerp(n011, n111, u), w), + v); + }; + +})(this);