Index: ps/trunk/source/simulation2/components/CCmpUnitMotion.h =================================================================== --- ps/trunk/source/simulation2/components/CCmpUnitMotion.h (revision 25685) +++ ps/trunk/source/simulation2/components/CCmpUnitMotion.h (revision 25686) @@ -1,1779 +1,1782 @@ /* Copyright (C) 2021 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #ifndef INCLUDED_CCMPUNITMOTION #define INCLUDED_CCMPUNITMOTION #include "simulation2/system/Component.h" #include "ICmpUnitMotion.h" #include "simulation2/components/CCmpUnitMotionManager.h" #include "simulation2/components/ICmpObstruction.h" #include "simulation2/components/ICmpObstructionManager.h" #include "simulation2/components/ICmpOwnership.h" #include "simulation2/components/ICmpPosition.h" #include "simulation2/components/ICmpPathfinder.h" #include "simulation2/components/ICmpRangeManager.h" #include "simulation2/components/ICmpValueModificationManager.h" #include "simulation2/components/ICmpVisual.h" #include "simulation2/helpers/Geometry.h" #include "simulation2/helpers/Render.h" #include "simulation2/MessageTypes.h" #include "simulation2/serialization/SerializedPathfinder.h" #include "simulation2/serialization/SerializedTypes.h" #include "graphics/Overlay.h" #include "maths/FixedVector2D.h" #include "ps/CLogger.h" #include "ps/Profile.h" #include "renderer/Scene.h" // NB: this implementation of ICmpUnitMotion is very tightly coupled with UnitMotionManager. // As such, both are compiled in the same TU. // For debugging; units will start going straight to the target // instead of calling the pathfinder #define DISABLE_PATHFINDER 0 namespace { /** * Min/Max range to restrict short path queries to. (Larger ranges are (much) slower, * smaller ranges might miss some legitimate routes around large obstacles.) * NB: keep the max-range in sync with the vertex pathfinder "move the search space" heuristic. */ constexpr entity_pos_t SHORT_PATH_MIN_SEARCH_RANGE = entity_pos_t::FromInt(12 * Pathfinding::NAVCELL_SIZE_INT); constexpr entity_pos_t SHORT_PATH_MAX_SEARCH_RANGE = entity_pos_t::FromInt(56 * Pathfinding::NAVCELL_SIZE_INT); constexpr entity_pos_t SHORT_PATH_SEARCH_RANGE_INCREMENT = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT); constexpr u8 SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY = 1; /** * When using the short-pathfinder to rejoin a long-path waypoint, aim for a circle of this radius around the waypoint. */ constexpr entity_pos_t SHORT_PATH_LONG_WAYPOINT_RANGE = entity_pos_t::FromInt(4 * Pathfinding::NAVCELL_SIZE_INT); /** * Minimum distance to goal for a long path request */ constexpr entity_pos_t LONG_PATH_MIN_DIST = entity_pos_t::FromInt(16 * Pathfinding::NAVCELL_SIZE_INT); /** * If we are this close to our target entity/point, then think about heading * for it in a straight line instead of pathfinding. */ constexpr entity_pos_t DIRECT_PATH_RANGE = entity_pos_t::FromInt(24 * Pathfinding::NAVCELL_SIZE_INT); /** * To avoid recomputing paths too often, have some leeway for target range checks * based on our distance to the target. Increase that incertainty by one navcell * for every this many tiles of distance. */ constexpr entity_pos_t TARGET_UNCERTAINTY_MULTIPLIER = entity_pos_t::FromInt(8 * Pathfinding::NAVCELL_SIZE_INT); /** * When following a known imperfect path (i.e. a path that won't take us in range of our goal * we still recompute a new path every N turn to adapt to moving targets (for example, ships that must pickup * units may easily end up in this state, they still need to adjust to moving units). * This is rather arbitrary and mostly for simplicity & optimisation (a better recomputing algorithm * would not need this). */ constexpr u8 KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN = 12; /** * When we fail to move this many turns in a row, inform other components that the move will fail. * Experimentally, this number needs to be somewhat high or moving groups of units will lead to stuck units. * However, too high means units will look idle for a long time when they are failing to move. * TODO: if UnitMotion could send differentiated "unreachable" and "currently stuck" failing messages, * this could probably be lowered. * TODO: when unit pushing is implemented, this number can probably be lowered. */ constexpr u8 MAX_FAILED_MOVEMENTS = 35; /** * When computing paths but failing to move, we want to occasionally alternate pathfinder systems * to avoid getting stuck (the short pathfinder can unstuck the long-range one and vice-versa, depending). */ constexpr u8 ALTERNATE_PATH_TYPE_DELAY = 3; constexpr u8 ALTERNATE_PATH_TYPE_EVERY = 6; /** * After this many failed computations, start sending "VERY_OBSTRUCTED" messages instead. * Should probably be larger than ALTERNATE_PATH_TYPE_DELAY. */ constexpr u8 VERY_OBSTRUCTED_THRESHOLD = 10; const CColor OVERLAY_COLOR_LONG_PATH(1, 1, 1, 1); const CColor OVERLAY_COLOR_SHORT_PATH(1, 0, 0, 1); } // anonymous namespace class CCmpUnitMotion final : public ICmpUnitMotion { friend class CCmpUnitMotionManager; public: static void ClassInit(CComponentManager& componentManager) { componentManager.SubscribeToMessageType(MT_Create); componentManager.SubscribeToMessageType(MT_Destroy); componentManager.SubscribeToMessageType(MT_PathResult); componentManager.SubscribeToMessageType(MT_OwnershipChanged); componentManager.SubscribeToMessageType(MT_ValueModification); componentManager.SubscribeToMessageType(MT_MovementObstructionChanged); componentManager.SubscribeToMessageType(MT_Deserialized); } DEFAULT_COMPONENT_ALLOCATOR(UnitMotion) bool m_DebugOverlayEnabled; std::vector m_DebugOverlayLongPathLines; std::vector m_DebugOverlayShortPathLines; // Template state: bool m_FormationController; fixed m_TemplateWalkSpeed, m_TemplateRunMultiplier; pass_class_t m_PassClass; std::string m_PassClassName; // Dynamic state: entity_pos_t m_Clearance; // cached for efficiency fixed m_WalkSpeed, m_RunMultiplier; bool m_FacePointAfterMove; // Whether the unit participates in pushing. bool m_Pushing = false; // Whether the unit blocks movement (& is blocked by movement blockers) // Cached from ICmpObstruction. bool m_BlockMovement = false; // Internal counter used when recovering from obstructed movement. // Most notably, increases the search range of the vertex pathfinder. // See HandleObstructedMove() for more details. u8 m_FailedMovements = 0; // If > 0, PathingUpdateNeeded returns false always. // This exists because the goal may be unreachable to the short/long pathfinder. // In such cases, we would compute inacceptable paths and PathingUpdateNeeded would trigger every turn, // which would be quite bad for performance. // To avoid that, when we know the new path is imperfect, treat it as OK and follow it anyways. // When reaching the end, we'll go through HandleObstructedMove and reset regardless. // To still recompute now and then (the target may be moving), this is a countdown decremented on each frame. u8 m_FollowKnownImperfectPathCountdown = 0; struct Ticket { u32 m_Ticket = 0; // asynchronous request ID we're waiting for, or 0 if none enum Type { SHORT_PATH, LONG_PATH } m_Type = SHORT_PATH; // Pick some default value to avoid UB. void clear() { m_Ticket = 0; } } m_ExpectedPathTicket; struct MoveRequest { enum Type { NONE, POINT, ENTITY, OFFSET } m_Type = NONE; entity_id_t m_Entity = INVALID_ENTITY; CFixedVector2D m_Position; entity_pos_t m_MinRange, m_MaxRange; // For readability CFixedVector2D GetOffset() const { return m_Position; }; MoveRequest() = default; MoveRequest(CFixedVector2D pos, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(POINT), m_Position(pos), m_MinRange(minRange), m_MaxRange(maxRange) {}; MoveRequest(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) : m_Type(ENTITY), m_Entity(target), m_MinRange(minRange), m_MaxRange(maxRange) {}; MoveRequest(entity_id_t target, CFixedVector2D offset) : m_Type(OFFSET), m_Entity(target), m_Position(offset) {}; } m_MoveRequest; // If the entity moves, it will do so at m_WalkSpeed * m_SpeedMultiplier. fixed m_SpeedMultiplier; // This caches the resulting speed from m_WalkSpeed * m_SpeedMultiplier for convenience. fixed m_Speed; // Current mean speed (over the last turn). fixed m_CurSpeed; // Currently active paths (storing waypoints in reverse order). // The last item in each path is the point we're currently heading towards. WaypointPath m_LongPath; WaypointPath m_ShortPath; static std::string GetSchema() { return "Provides the unit with the ability to move around the world by itself." "" "7.0" "default" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""; } virtual void Init(const CParamNode& paramNode) { m_FormationController = paramNode.GetChild("FormationController").ToBool(); m_FacePointAfterMove = true; m_WalkSpeed = m_TemplateWalkSpeed = m_Speed = paramNode.GetChild("WalkSpeed").ToFixed(); m_SpeedMultiplier = fixed::FromInt(1); m_CurSpeed = fixed::Zero(); m_RunMultiplier = m_TemplateRunMultiplier = fixed::FromInt(1); if (paramNode.GetChild("RunMultiplier").IsOk()) m_RunMultiplier = m_TemplateRunMultiplier = paramNode.GetChild("RunMultiplier").ToFixed(); CmpPtr cmpPathfinder(GetSystemEntity()); if (cmpPathfinder) { m_PassClassName = paramNode.GetChild("PassabilityClass").ToString(); m_PassClass = cmpPathfinder->GetPassabilityClass(m_PassClassName); m_Clearance = cmpPathfinder->GetClearance(m_PassClass); CmpPtr cmpObstruction(GetEntityHandle()); if (cmpObstruction) { cmpObstruction->SetUnitClearance(m_Clearance); m_BlockMovement = cmpObstruction->GetBlockMovementFlag(true); } } SetParticipateInPushing(!paramNode.GetChild("DisablePushing").IsOk() || !paramNode.GetChild("DisablePushing").ToBool()); m_DebugOverlayEnabled = false; } virtual void Deinit() { } template void SerializeCommon(S& serialize) { serialize.StringASCII("pass class", m_PassClassName, 0, 64); serialize.NumberU32_Unbounded("ticket", m_ExpectedPathTicket.m_Ticket); Serializer(serialize, "ticket type", m_ExpectedPathTicket.m_Type, Ticket::Type::LONG_PATH); serialize.NumberU8_Unbounded("failed movements", m_FailedMovements); serialize.NumberU8_Unbounded("followknownimperfectpath", m_FollowKnownImperfectPathCountdown); Serializer(serialize, "target type", m_MoveRequest.m_Type, MoveRequest::Type::OFFSET); serialize.NumberU32_Unbounded("target entity", m_MoveRequest.m_Entity); serialize.NumberFixed_Unbounded("target pos x", m_MoveRequest.m_Position.X); serialize.NumberFixed_Unbounded("target pos y", m_MoveRequest.m_Position.Y); serialize.NumberFixed_Unbounded("target min range", m_MoveRequest.m_MinRange); serialize.NumberFixed_Unbounded("target max range", m_MoveRequest.m_MaxRange); serialize.NumberFixed_Unbounded("speed multiplier", m_SpeedMultiplier); serialize.NumberFixed_Unbounded("current speed", m_CurSpeed); serialize.Bool("facePointAfterMove", m_FacePointAfterMove); serialize.Bool("pushing", m_Pushing); Serializer(serialize, "long path", m_LongPath.m_Waypoints); Serializer(serialize, "short path", m_ShortPath.m_Waypoints); } virtual void Serialize(ISerializer& serialize) { SerializeCommon(serialize); } virtual void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize) { Init(paramNode); SerializeCommon(deserialize); CmpPtr cmpPathfinder(GetSystemEntity()); if (cmpPathfinder) m_PassClass = cmpPathfinder->GetPassabilityClass(m_PassClassName); CmpPtr cmpObstruction(GetEntityHandle()); if (cmpObstruction) m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false); } virtual void HandleMessage(const CMessage& msg, bool UNUSED(global)) { switch (msg.GetType()) { case MT_RenderSubmit: { PROFILE("UnitMotion::RenderSubmit"); const CMessageRenderSubmit& msgData = static_cast (msg); RenderSubmit(msgData.collector); break; } case MT_PathResult: { const CMessagePathResult& msgData = static_cast (msg); PathResult(msgData.ticket, msgData.path); break; } case MT_Create: { if (!ENTITY_IS_LOCAL(GetEntityId())) CmpPtr(GetSystemEntity())->Register(this, GetEntityId(), m_FormationController); break; } case MT_Destroy: { if (!ENTITY_IS_LOCAL(GetEntityId())) CmpPtr(GetSystemEntity())->Unregister(GetEntityId()); break; } case MT_MovementObstructionChanged: { CmpPtr cmpObstruction(GetEntityHandle()); if (cmpObstruction) m_BlockMovement = cmpObstruction->GetBlockMovementFlag(false); break; } case MT_ValueModification: { const CMessageValueModification& msgData = static_cast (msg); if (msgData.component != L"UnitMotion") break; FALLTHROUGH; } case MT_OwnershipChanged: { OnValueModification(); break; } case MT_Deserialized: { OnValueModification(); if (!ENTITY_IS_LOCAL(GetEntityId())) CmpPtr(GetSystemEntity())->Register(this, GetEntityId(), m_FormationController); break; } } } void UpdateMessageSubscriptions() { bool needRender = m_DebugOverlayEnabled; GetSimContext().GetComponentManager().DynamicSubscriptionNonsync(MT_RenderSubmit, this, needRender); } virtual bool IsMoveRequested() const { return m_MoveRequest.m_Type != MoveRequest::NONE; } virtual fixed GetSpeedMultiplier() const { return m_SpeedMultiplier; } virtual void SetSpeedMultiplier(fixed multiplier) { m_SpeedMultiplier = std::min(multiplier, m_RunMultiplier); m_Speed = m_SpeedMultiplier.Multiply(GetWalkSpeed()); } virtual fixed GetSpeed() const { return m_Speed; } virtual fixed GetWalkSpeed() const { return m_WalkSpeed; } virtual fixed GetRunMultiplier() const { return m_RunMultiplier; } virtual CFixedVector2D EstimateFuturePosition(const fixed dt) const { CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return CFixedVector2D(); // TODO: formation members should perhaps try to use the controller's position. CFixedVector2D pos = cmpPosition->GetPosition2D(); entity_angle_t angle = cmpPosition->GetRotation().Y; // Copy the path so we don't change it. WaypointPath shortPath = m_ShortPath; WaypointPath longPath = m_LongPath; PerformMove(dt, cmpPosition->GetTurnRate(), shortPath, longPath, pos, angle); return pos; } virtual pass_class_t GetPassabilityClass() const { return m_PassClass; } virtual std::string GetPassabilityClassName() const { return m_PassClassName; } virtual void SetPassabilityClassName(const std::string& passClassName) { m_PassClassName = passClassName; CmpPtr cmpPathfinder(GetSystemEntity()); if (cmpPathfinder) m_PassClass = cmpPathfinder->GetPassabilityClass(passClassName); } virtual fixed GetCurrentSpeed() const { return m_CurSpeed; } virtual void SetFacePointAfterMove(bool facePointAfterMove) { m_FacePointAfterMove = facePointAfterMove; } virtual bool GetFacePointAfterMove() const { return m_FacePointAfterMove; } virtual void SetDebugOverlay(bool enabled) { m_DebugOverlayEnabled = enabled; UpdateMessageSubscriptions(); } virtual bool MoveToPointRange(entity_pos_t x, entity_pos_t z, entity_pos_t minRange, entity_pos_t maxRange) { return MoveTo(MoveRequest(CFixedVector2D(x, z), minRange, maxRange)); } virtual bool MoveToTargetRange(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) { return MoveTo(MoveRequest(target, minRange, maxRange)); } virtual void MoveToFormationOffset(entity_id_t target, entity_pos_t x, entity_pos_t z) { MoveTo(MoveRequest(target, CFixedVector2D(x, z))); } virtual bool IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange); virtual void FaceTowardsPoint(entity_pos_t x, entity_pos_t z); /** * Clears the current MoveRequest - the unit will stop and no longer try and move. * This should never be called from UnitMotion, since MoveToX orders are given * by other components - these components should also decide when to stop. */ virtual void StopMoving() { if (m_FacePointAfterMove) { CmpPtr cmpPosition(GetEntityHandle()); if (cmpPosition && cmpPosition->IsInWorld()) { CFixedVector2D targetPos; if (ComputeTargetPosition(targetPos)) FaceTowardsPointFromPos(cmpPosition->GetPosition2D(), targetPos.X, targetPos.Y); } } m_MoveRequest = MoveRequest(); m_ExpectedPathTicket.clear(); m_LongPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.clear(); } virtual entity_pos_t GetUnitClearance() const { return m_Clearance; } private: bool IsFormationMember() const { // TODO: this really shouldn't be what we are checking for. return m_MoveRequest.m_Type == MoveRequest::OFFSET; } bool IsFormationControllerMoving() const { CmpPtr cmpControllerMotion(GetSimContext(), m_MoveRequest.m_Entity); return cmpControllerMotion && cmpControllerMotion->IsMoveRequested(); } entity_id_t GetGroup() const { return IsFormationMember() ? m_MoveRequest.m_Entity : GetEntityId(); } void SetParticipateInPushing(bool pushing) { CmpPtr cmpUnitMotionManager(GetSystemEntity()); m_Pushing = pushing && cmpUnitMotionManager->IsPushingActivated(); } /** * Warns other components that our current movement will likely fail (e.g. we won't be able to reach our target) * This should only be called before the actual movement in a given turn, or units might both move and try to do things * on the same turn, leading to gliding units. */ void MoveFailed() { // Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time // if our current offset is unreachable, but we don't want to end up stuck. // (If the formation controller has stopped moving however, we can safely message). if (IsFormationMember() && IsFormationControllerMoving()) return; CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_FAILURE); GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg); } /** * Warns other components that our current movement is likely over (i.e. we probably reached our destination) * This should only be called before the actual movement in a given turn, or units might both move and try to do things * on the same turn, leading to gliding units. */ void MoveSucceeded() { // Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time // if our current offset is unreachable, but we don't want to end up stuck. // (If the formation controller has stopped moving however, we can safely message). if (IsFormationMember() && IsFormationControllerMoving()) return; CMessageMotionUpdate msg(CMessageMotionUpdate::LIKELY_SUCCESS); GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg); } /** * Warns other components that our current movement was obstructed (i.e. we failed to move this turn). * This should only be called before the actual movement in a given turn, or units might both move and try to do things * on the same turn, leading to gliding units. */ void MoveObstructed() { // Don't notify if we are a formation member in a moving formation - we can occasionally be stuck for a long time // if our current offset is unreachable, but we don't want to end up stuck. // (If the formation controller has stopped moving however, we can safely message). if (IsFormationMember() && IsFormationControllerMoving()) return; CMessageMotionUpdate msg(m_FailedMovements >= VERY_OBSTRUCTED_THRESHOLD ? CMessageMotionUpdate::VERY_OBSTRUCTED : CMessageMotionUpdate::OBSTRUCTED); GetSimContext().GetComponentManager().PostMessage(GetEntityId(), msg); } /** * Increment the number of failed movements and notify other components if required. * @returns true if the failure was notified, false otherwise. */ bool IncrementFailedMovementsAndMaybeNotify() { m_FailedMovements++; if (m_FailedMovements >= MAX_FAILED_MOVEMENTS) { MoveFailed(); m_FailedMovements = 0; return true; } return false; } /** * If path would take us farther away from the goal than pos currently is, return false, else return true. */ bool RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const; bool ShouldAlternatePathfinder() const { return (m_FailedMovements == ALTERNATE_PATH_TYPE_DELAY) || ((MAX_FAILED_MOVEMENTS - ALTERNATE_PATH_TYPE_DELAY) % ALTERNATE_PATH_TYPE_EVERY == 0); } bool InShortPathRange(const PathGoal& goal, const CFixedVector2D& pos) const { return goal.DistanceToPoint(pos) < LONG_PATH_MIN_DIST; } entity_pos_t ShortPathSearchRange() const { u8 multiple = m_FailedMovements < SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY ? 0 : m_FailedMovements - SHORT_PATH_SEARCH_RANGE_INCREASE_DELAY; fixed searchRange = SHORT_PATH_MIN_SEARCH_RANGE + SHORT_PATH_SEARCH_RANGE_INCREMENT * multiple; if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE) searchRange = SHORT_PATH_MAX_SEARCH_RANGE; return searchRange; } /** * Handle the result of an asynchronous path query. */ void PathResult(u32 ticket, const WaypointPath& path); void OnValueModification() { CmpPtr cmpValueModificationManager(GetSystemEntity()); if (!cmpValueModificationManager) return; m_WalkSpeed = cmpValueModificationManager->ApplyModifications(L"UnitMotion/WalkSpeed", m_TemplateWalkSpeed, GetEntityId()); m_RunMultiplier = cmpValueModificationManager->ApplyModifications(L"UnitMotion/RunMultiplier", m_TemplateRunMultiplier, GetEntityId()); // For MT_Deserialize compute m_Speed from the serialized m_SpeedMultiplier. // For MT_ValueModification and MT_OwnershipChanged, adjust m_SpeedMultiplier if needed // (in case then new m_RunMultiplier value is lower than the old). SetSpeedMultiplier(m_SpeedMultiplier); } /** * Check if we are at destination early in the turn, this both lets units react faster * and ensure that distance comparisons are done while units are not being moved * (otherwise they won't be commutative). */ void OnTurnStart(); void PreMove(CCmpUnitMotionManager::MotionState& state); void Move(CCmpUnitMotionManager::MotionState& state, fixed dt); void PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt); /** * Returns true if we are possibly at our destination. * Since the concept of being at destination is dependent on why the move was requested, * UnitMotion can only ever hint about this, hence the conditional tone. */ bool PossiblyAtDestination() const; /** * Process the move the unit will do this turn. * This does not send actually change the position. * @returns true if the move was obstructed. */ bool PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, entity_angle_t& angle) const; /** * Update other components on our speed. * (For performance, this should try to avoid sending messages). */ void UpdateMovementState(entity_pos_t speed); /** * React if our move was obstructed. * @param moved - true if the unit still managed to move. * @returns true if the obstruction required handling, false otherwise. */ bool HandleObstructedMove(bool moved); /** * Returns true if the target position is valid. False otherwise. * (this may indicate that the target is e.g. out of the world/dead). * NB: for code-writing convenience, if we have no target, this returns true. */ bool TargetHasValidPosition(const MoveRequest& moveRequest) const; bool TargetHasValidPosition() const { return TargetHasValidPosition(m_MoveRequest); } /** * Computes the current location of our target entity (plus offset). * Returns false if no target entity or no valid position. */ bool ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const; bool ComputeTargetPosition(CFixedVector2D& out) const { return ComputeTargetPosition(out, m_MoveRequest); } /** * Attempts to replace the current path with a straight line to the target, * if it's close enough and the route is not obstructed. */ bool TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths); /** * Returns whether our we need to recompute a path to reach our target. */ bool PathingUpdateNeeded(const CFixedVector2D& from) const; /** * Rotate to face towards the target point, given the current pos */ void FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z); /** * Units in 'pushing' mode are marked as 'moving' in the obstruction manager. * Units in 'pushing' mode should skip them in checkMovement (to enable pushing). * However, units for which pushing is deactivated should collide against everyone. * Units that don't block movement never participate in pushing, but they also * shouldn't collide with pushing units. */ bool ShouldCollideWithMovingUnits() const { return !m_Pushing && m_BlockMovement; } /** * Returns an appropriate obstruction filter for use with path requests. */ ControlGroupMovementObstructionFilter GetObstructionFilter() const { return ControlGroupMovementObstructionFilter(ShouldCollideWithMovingUnits(), GetGroup()); } /** * Filter a specific tag on top of the existing control groups. */ SkipTagAndControlGroupObstructionFilter GetObstructionFilter(const ICmpObstructionManager::tag_t& tag) const { return SkipTagAndControlGroupObstructionFilter(tag, ShouldCollideWithMovingUnits(), GetGroup()); } /** * Decide whether to approximate the given range from a square target as a circle, * rather than as a square. */ bool ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const; /** * Create a PathGoal from a move request. * @returns true if the goal was successfully created. */ bool ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const; /** * Compute a path to the given goal from the given position. * Might go in a straight line immediately, or might start an asynchronous path request. */ void ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal); /** * Start an asynchronous long path query. */ void RequestLongPath(const CFixedVector2D& from, const PathGoal& goal); /** * Start an asynchronous short path query. * @param extendRange - if true, extend the search range to at least the distance to the goal. */ void RequestShortPath(const CFixedVector2D& from, const PathGoal& goal, bool extendRange); /** * General handler for MoveTo interface functions. */ bool MoveTo(MoveRequest request); /** * Convert a path into a renderable list of lines */ void RenderPath(const WaypointPath& path, std::vector& lines, CColor color); void RenderSubmit(SceneCollector& collector); }; REGISTER_COMPONENT_TYPE(UnitMotion) bool CCmpUnitMotion::RejectFartherPaths(const PathGoal& goal, const WaypointPath& path, const CFixedVector2D& pos) const { if (path.m_Waypoints.empty()) return false; // Reject the new path if it does not lead us closer to the target's position. if (goal.DistanceToPoint(pos) <= goal.DistanceToPoint(CFixedVector2D(path.m_Waypoints.front().x, path.m_Waypoints.front().z))) return true; return false; } void CCmpUnitMotion::PathResult(u32 ticket, const WaypointPath& path) { // Ignore obsolete path requests if (ticket != m_ExpectedPathTicket.m_Ticket || m_MoveRequest.m_Type == MoveRequest::NONE) return; Ticket::Type ticketType = m_ExpectedPathTicket.m_Type; m_ExpectedPathTicket.clear(); // If we not longer have a position, we won't be able to do much. // Fail in the next Move() call. CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return; CFixedVector2D pos = cmpPosition->GetPosition2D(); // Assume all long paths were towards the goal, and assume short paths were if there are no long waypoints. bool pathedTowardsGoal = ticketType == Ticket::LONG_PATH || m_LongPath.m_Waypoints.empty(); // Check if we need to run the short-path hack (warning: tricky control flow). bool shortPathHack = false; if (path.m_Waypoints.empty()) { // No waypoints means pathing failed. If this was a long-path, try the short-path hack. if (!pathedTowardsGoal) return; shortPathHack = ticketType == Ticket::LONG_PATH; } else if (PathGoal goal; pathedTowardsGoal && ComputeGoal(goal, m_MoveRequest) && RejectFartherPaths(goal, path, pos)) { // Reject paths that would take the unit further away from the goal. // This assumes that we prefer being closer 'as the crow flies' to unreachable goals. // This is a hack of sorts around units 'dancing' between two positions (see e.g. #3144), // but never actually failing to move, ergo never actually informing unitAI that it succeeds/fails. // (for short paths, only do so if aiming directly for the goal // as sub-goals may be farther than we are). // If this was a long-path and we no longer have waypoints, try the short-path hack. if (!m_LongPath.m_Waypoints.empty()) return; shortPathHack = ticketType == Ticket::LONG_PATH; } // Short-path hack: if the long-range pathfinder doesn't find an acceptable path, push a fake waypoint at the goal. // This means HandleObstructedMove will use the short-pathfinder to try and reach it, // and that may find a path as the vertex pathfinder is more precise. if (shortPathHack) { // If we're resorting to the short-path hack, the situation is dire. Most likely, the goal is unreachable. // We want to find a path or fail fast. Bump failed movements so the short pathfinder will run at max-range // right away. This is safe from a performance PoV because it can only happen if the target is unreachable to // the long-range pathfinder, which is rare, and since the entity will fail to move if the goal is actually unreachable, // the failed movements will be increased to MAX anyways, so just shortcut. m_FailedMovements = MAX_FAILED_MOVEMENTS - 2; CFixedVector2D targetPos; if (ComputeTargetPosition(targetPos)) m_LongPath.m_Waypoints.emplace_back(Waypoint{ targetPos.X, targetPos.Y }); return; } if (ticketType == Ticket::LONG_PATH) { m_LongPath = path; // Long paths don't properly follow diagonals because of JPS/the grid. Since units now take time turning, // they can actually slow down substantially if they have to do a one navcell diagonal movement, // which is somewhat common at the beginning of a new path. // For that reason, if the first waypoint is really close, check if we can't go directly to the second. if (m_LongPath.m_Waypoints.size() >= 2) { const Waypoint& firstWpt = m_LongPath.m_Waypoints.back(); if (CFixedVector2D(firstWpt.x - pos.X, firstWpt.z - pos.Y).CompareLength(Pathfinding::NAVCELL_SIZE * 4) <= 0) { CmpPtr cmpPathfinder(GetSystemEntity()); ENSURE(cmpPathfinder); const Waypoint& secondWpt = m_LongPath.m_Waypoints[m_LongPath.m_Waypoints.size() - 2]; if (cmpPathfinder->CheckMovement(GetObstructionFilter(), pos.X, pos.Y, secondWpt.x, secondWpt.z, m_Clearance, m_PassClass)) m_LongPath.m_Waypoints.pop_back(); } } } else m_ShortPath = path; m_FollowKnownImperfectPathCountdown = 0; if (!pathedTowardsGoal) return; // Performance hack: If we were pathing towards the goal and this new path won't put us in range, // it's highly likely that we are going somewhere unreachable. // However, Move() will try to recompute the path every turn, which can be quite slow. // To avoid this, act as if our current path leads us to the correct destination. // NB: for short-paths, the problem might be that the search space is too small // but we'll still follow this path until the en and try again then. // Because we reject farther paths, it works out. if (PathingUpdateNeeded(pos)) { // Inform other components early, as they might have better behaviour than waiting for the path to carry out. // Send OBSTRUCTED at first - moveFailed is likely to trigger path recomputation and we might end up // recomputing too often for nothing. if (!IncrementFailedMovementsAndMaybeNotify()) MoveObstructed(); // We'll automatically recompute a path when this reaches 0, as a way to improve behaviour. // (See D665 - this is needed because the target may be moving, and we should adjust to that). m_FollowKnownImperfectPathCountdown = KNOWN_IMPERFECT_PATH_RESET_COUNTDOWN; } } void CCmpUnitMotion::OnTurnStart() { if (PossiblyAtDestination()) MoveSucceeded(); else if (!TargetHasValidPosition()) { // Scrap waypoints - we don't know where to go. // If the move request remains unchanged and the target again has a valid position later on, // moving will be resumed. // Units may want to move to move to the target's last known position, // but that should be decided by UnitAI (handling MoveFailed), not UnitMotion. m_LongPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.clear(); MoveFailed(); } } void CCmpUnitMotion::PreMove(CCmpUnitMotionManager::MotionState& state) { state.ignore = !m_Pushing || !m_BlockMovement; + state.wasObstructed = false; + state.wentStraight = false; + // If we were idle and will still be, no need for an update. state.needUpdate = state.cmpPosition->IsInWorld() && (m_CurSpeed != fixed::Zero() || m_MoveRequest.m_Type != MoveRequest::NONE); if (!m_BlockMovement) return; state.controlGroup = IsFormationMember() ? m_MoveRequest.m_Entity : INVALID_ENTITY; // Update moving flag, this is an internal construct used for pushing, // so it does not really reflect whether the unit is actually moving or not. state.isMoving = m_Pushing && m_MoveRequest.m_Type != MoveRequest::NONE; CmpPtr cmpObstruction(GetEntityHandle()); if (cmpObstruction) cmpObstruction->SetMovingFlag(state.isMoving); } void CCmpUnitMotion::Move(CCmpUnitMotionManager::MotionState& state, fixed dt) { PROFILE("Move"); // If we're chasing a potentially-moving unit and are currently close // enough to its current position, and we can head in a straight line // to it, then throw away our current path and go straight to it. state.wentStraight = TryGoingStraightToTarget(state.initialPos, true); state.wasObstructed = PerformMove(dt, state.cmpPosition->GetTurnRate(), m_ShortPath, m_LongPath, state.pos, state.angle); } void CCmpUnitMotion::PostMove(CCmpUnitMotionManager::MotionState& state, fixed dt) { // Update our speed over this turn so that the visual actor shows the correct animation. if (state.pos == state.initialPos) { if (state.angle != state.initialAngle) state.cmpPosition->TurnTo(state.angle); UpdateMovementState(fixed::Zero()); } else { // Update the Position component after our movement (if we actually moved anywhere) CFixedVector2D offset = state.pos - state.initialPos; // When moving always set the angle in the direction of the movement, // if we are not trying to move, assume this is pushing-related movement, // and maintain the current angle instead. if (IsMoveRequested()) state.angle = atan2_approx(offset.X, offset.Y); state.cmpPosition->MoveAndTurnTo(state.pos.X, state.pos.Y, state.angle); // Calculate the mean speed over this past turn. UpdateMovementState(offset.Length() / dt); } if (state.wasObstructed && HandleObstructedMove(state.pos != state.initialPos)) return; else if (!state.wasObstructed && state.pos != state.initialPos) m_FailedMovements = 0; // If we moved straight, and didn't quite finish the path, reset - we'll update it next turn if still OK. if (state.wentStraight && !state.wasObstructed) m_ShortPath.m_Waypoints.clear(); // We may need to recompute our path sometimes (e.g. if our target moves). // Since we request paths asynchronously anyways, this does not need to be done before moving. if (!state.wentStraight && PathingUpdateNeeded(state.pos)) { PathGoal goal; if (ComputeGoal(goal, m_MoveRequest)) ComputePathToGoal(state.pos, goal); } else if (m_FollowKnownImperfectPathCountdown > 0) --m_FollowKnownImperfectPathCountdown; } bool CCmpUnitMotion::PossiblyAtDestination() const { if (m_MoveRequest.m_Type == MoveRequest::NONE) return false; CmpPtr cmpObstructionManager(GetSystemEntity()); ENSURE(cmpObstructionManager); if (m_MoveRequest.m_Type == MoveRequest::POINT) return cmpObstructionManager->IsInPointRange(GetEntityId(), m_MoveRequest.m_Position.X, m_MoveRequest.m_Position.Y, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false); if (m_MoveRequest.m_Type == MoveRequest::ENTITY) return cmpObstructionManager->IsInTargetRange(GetEntityId(), m_MoveRequest.m_Entity, m_MoveRequest.m_MinRange, m_MoveRequest.m_MaxRange, false); if (m_MoveRequest.m_Type == MoveRequest::OFFSET) { CmpPtr cmpControllerMotion(GetSimContext(), m_MoveRequest.m_Entity); if (cmpControllerMotion && cmpControllerMotion->IsMoveRequested()) return false; // In formation, return a match only if we are exactly at the target position. // Otherwise, units can go in an infinite "walzting" loop when the Idle formation timer // reforms them. CFixedVector2D targetPos; ComputeTargetPosition(targetPos); CmpPtr cmpPosition(GetEntityHandle()); return (targetPos-cmpPosition->GetPosition2D()).CompareLength(fixed::Zero()) <= 0; } return false; } bool CCmpUnitMotion::PerformMove(fixed dt, const fixed& turnRate, WaypointPath& shortPath, WaypointPath& longPath, CFixedVector2D& pos, entity_angle_t& angle) const { // If there are no waypoint, behave as though we were obstructed and let HandleObstructedMove handle it. if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty()) return true; // Wrap the angle to (-Pi, Pi]. while (angle > entity_angle_t::Pi()) angle -= entity_angle_t::Pi() * 2; while (angle < -entity_angle_t::Pi()) angle += entity_angle_t::Pi() * 2; // TODO: there's some asymmetry here when units look at other // units' positions - the result will depend on the order of execution. // Maybe we should split the updates into multiple phases to minimise // that problem. CmpPtr cmpPathfinder(GetSystemEntity()); ENSURE(cmpPathfinder); fixed basicSpeed = m_Speed; // If in formation, run to keep up; otherwise just walk. if (IsFormationMember()) basicSpeed = m_Speed.Multiply(m_RunMultiplier); // Find the speed factor of the underlying terrain. // (We only care about the tile we start on - it doesn't matter if we're moving // partially onto a much slower/faster tile). // TODO: Terrain-dependent speeds are not currently supported. fixed terrainSpeed = fixed::FromInt(1); fixed maxSpeed = basicSpeed.Multiply(terrainSpeed); fixed timeLeft = dt; fixed zero = fixed::Zero(); ICmpObstructionManager::tag_t specificIgnore; if (m_MoveRequest.m_Type == MoveRequest::ENTITY) { CmpPtr cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity); if (cmpTargetObstruction) specificIgnore = cmpTargetObstruction->GetObstruction(); } while (timeLeft > zero) { // If we ran out of path, we have to stop. if (shortPath.m_Waypoints.empty() && longPath.m_Waypoints.empty()) break; CFixedVector2D target; if (shortPath.m_Waypoints.empty()) target = CFixedVector2D(longPath.m_Waypoints.back().x, longPath.m_Waypoints.back().z); else target = CFixedVector2D(shortPath.m_Waypoints.back().x, shortPath.m_Waypoints.back().z); CFixedVector2D offset = target - pos; if (turnRate > zero && !offset.IsZero()) { fixed maxRotation = turnRate.Multiply(timeLeft); fixed angleDiff = angle - atan2_approx(offset.X, offset.Y); if (angleDiff != zero) { fixed absoluteAngleDiff = angleDiff.Absolute(); if (absoluteAngleDiff > entity_angle_t::Pi()) absoluteAngleDiff = entity_angle_t::Pi() * 2 - absoluteAngleDiff; // Figure out whether rotating will increase or decrease the angle, and how far we need to rotate in that direction. int direction = (entity_angle_t::Zero() < angleDiff && angleDiff <= entity_angle_t::Pi()) || angleDiff < -entity_angle_t::Pi() ? -1 : 1; // Can't rotate far enough, just rotate in the correct direction. if (absoluteAngleDiff > maxRotation) { angle += maxRotation * direction; if (angle * direction > entity_angle_t::Pi()) angle -= entity_angle_t::Pi() * 2 * direction; break; } // Rotate towards the next waypoint and continue moving. angle = atan2_approx(offset.X, offset.Y); // Give some 'free' rotation for angles below 0.5 radians. timeLeft = (std::min(maxRotation, maxRotation - absoluteAngleDiff + fixed::FromInt(1)/2)) / turnRate; } } // Work out how far we can travel in timeLeft. fixed maxdist = maxSpeed.Multiply(timeLeft); // If the target is close, we can move there directly. fixed offsetLength = offset.Length(); if (offsetLength <= maxdist) { if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass)) { pos = target; // Spend the rest of the time heading towards the next waypoint. timeLeft = (maxdist - offsetLength) / maxSpeed; if (shortPath.m_Waypoints.empty()) longPath.m_Waypoints.pop_back(); else shortPath.m_Waypoints.pop_back(); continue; } else { // Error - path was obstructed. return true; } } else { // Not close enough, so just move in the right direction. offset.Normalize(maxdist); target = pos + offset; if (cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), pos.X, pos.Y, target.X, target.Y, m_Clearance, m_PassClass)) pos = target; else return true; break; } } return false; } void CCmpUnitMotion::UpdateMovementState(entity_pos_t speed) { CmpPtr cmpVisual(GetEntityHandle()); if (cmpVisual) { if (speed == fixed::Zero()) cmpVisual->SelectMovementAnimation("idle", fixed::FromInt(1)); else cmpVisual->SelectMovementAnimation(speed > (m_WalkSpeed / 2).Multiply(m_RunMultiplier + fixed::FromInt(1)) ? "run" : "walk", speed); } m_CurSpeed = speed; } bool CCmpUnitMotion::HandleObstructedMove(bool moved) { CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return false; // We failed to move, inform other components as they might handle it. // (don't send messages on the first failure, as that would be too noisy). // Also don't increment above the initial MoveObstructed message if we actually manage to move a little. if (!moved || m_FailedMovements < 2) { if (!IncrementFailedMovementsAndMaybeNotify() && m_FailedMovements >= 2) MoveObstructed(); } PathGoal goal; if (!ComputeGoal(goal, m_MoveRequest)) return false; // At this point we have a position in the world since ComputeGoal checked for that. CFixedVector2D pos = cmpPosition->GetPosition2D(); // Assume that we are merely obstructed and the long path is salvageable, so try going around the obstruction. // This could be a separate function, but it doesn't really make sense to call it outside of here, and I can't find a name. // I use an IIFE to have nice 'return' semantics still. if ([&]() -> bool { // If the goal is close enough, we should ignore any remaining long waypoint and just // short path there directly, as that improves behaviour in general - see D2095). if (InShortPathRange(goal, pos)) return false; // Delete the next waypoint if it's reasonably close, // because it might be blocked by units and thus unreachable. // NB: this number is tricky. Make it too high, and units start going down dead ends, which looks odd (#5795) // Make it too low, and they might get stuck behind other obstructed entities. // It also has performance implications because it calls the short-pathfinder. fixed skipbeyond = std::max(ShortPathSearchRange() / 3, Pathfinding::NAVCELL_SIZE * 8); if (m_LongPath.m_Waypoints.size() > 1 && (pos - CFixedVector2D(m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z)).CompareLength(skipbeyond) < 0) { m_LongPath.m_Waypoints.pop_back(); } else if (ShouldAlternatePathfinder()) { // Recompute the whole thing occasionally, in case we got stuck in a dead end from removing long waypoints. RequestLongPath(pos, goal); return true; } if (m_LongPath.m_Waypoints.empty()) return false; // Compute a short path in the general vicinity of the next waypoint, to help pathfinding in crowds. // The goal here is to manage to move in the general direction of our target, not to be super accurate. fixed radius = Clamp(skipbeyond/3, Pathfinding::NAVCELL_SIZE * 4, Pathfinding::NAVCELL_SIZE * 12); PathGoal subgoal = { PathGoal::CIRCLE, m_LongPath.m_Waypoints.back().x, m_LongPath.m_Waypoints.back().z, radius }; RequestShortPath(pos, subgoal, false); return true; }()) return true; // If we couldn't use a workaround, try recomputing the entire path. ComputePathToGoal(pos, goal); return true; } bool CCmpUnitMotion::TargetHasValidPosition(const MoveRequest& moveRequest) const { if (moveRequest.m_Type != MoveRequest::ENTITY) return true; CmpPtr cmpPosition(GetSimContext(), moveRequest.m_Entity); return cmpPosition && cmpPosition->IsInWorld(); } bool CCmpUnitMotion::ComputeTargetPosition(CFixedVector2D& out, const MoveRequest& moveRequest) const { if (moveRequest.m_Type == MoveRequest::POINT) { out = moveRequest.m_Position; return true; } CmpPtr cmpTargetPosition(GetSimContext(), moveRequest.m_Entity); if (!cmpTargetPosition || !cmpTargetPosition->IsInWorld()) return false; if (moveRequest.m_Type == MoveRequest::OFFSET) { // There is an offset, so compute it relative to orientation entity_angle_t angle = cmpTargetPosition->GetRotation().Y; CFixedVector2D offset = moveRequest.GetOffset().Rotate(angle); out = cmpTargetPosition->GetPosition2D() + offset; } else { out = cmpTargetPosition->GetPosition2D(); // Position is only updated after all units have moved & pushed. // Therefore, we may need to interpolate the target position, depending on when this call takes place during the turn: // - On "Turn Start", we'll check positions directly without interpolation. // - During movement, we'll call this for direct-pathing & we need to interpolate // (this way, we move where the unit will end up at the end of _this_ turn, making it match on next turn start). // - After movement, we'll call this to request paths & we need to interpolate // (this way, we'll move where the unit ends up in the end of _next_ turn, making it a match in 2 turns). // TODO: This does not really aim many turns in advance, with orthogonal trajectories it probably should. CmpPtr cmpUnitMotion(GetSimContext(), moveRequest.m_Entity); CmpPtr cmpUnitMotionManager(GetSystemEntity()); bool needInterpolation = cmpUnitMotion && cmpUnitMotion->IsMoveRequested() && cmpUnitMotionManager->ComputingMotion(); if (needInterpolation) { // Add predicted movement. CFixedVector2D tempPos = out + (out - cmpTargetPosition->GetPreviousPosition2D()); out = tempPos; } } return true; } bool CCmpUnitMotion::TryGoingStraightToTarget(const CFixedVector2D& from, bool updatePaths) { // Assume if we have short paths we want to follow them. // Exception: offset movement (formations) generally have very short deltas // and to look good we need them to walk-straight most of the time. if (!IsFormationMember() && !m_ShortPath.m_Waypoints.empty()) return false; CFixedVector2D targetPos; if (!ComputeTargetPosition(targetPos)) return false; CmpPtr cmpPathfinder(GetSystemEntity()); if (!cmpPathfinder) return false; // Move the goal to match the target entity's new position PathGoal goal; if (!ComputeGoal(goal, m_MoveRequest)) return false; goal.x = targetPos.X; goal.z = targetPos.Y; // (we ignore changes to the target's rotation, since only buildings are // square and buildings don't move) // Find the point on the goal shape that we should head towards CFixedVector2D goalPos = goal.NearestPointOnGoal(from); // Fail if the target is too far away if ((goalPos - from).CompareLength(DIRECT_PATH_RANGE) > 0) return false; // Check if there's any collisions on that route. // For entity goals, skip only the specific obstruction tag or with e.g. walls we might ignore too many entities. ICmpObstructionManager::tag_t specificIgnore; if (m_MoveRequest.m_Type == MoveRequest::ENTITY) { CmpPtr cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity); if (cmpTargetObstruction) specificIgnore = cmpTargetObstruction->GetObstruction(); } // Check movement against units - we want to use the short pathfinder to walk around those if needed. if (specificIgnore.valid()) { if (!cmpPathfinder->CheckMovement(GetObstructionFilter(specificIgnore), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass)) return false; } else if (!cmpPathfinder->CheckMovement(GetObstructionFilter(), from.X, from.Y, goalPos.X, goalPos.Y, m_Clearance, m_PassClass)) return false; if (!updatePaths) return true; // That route is okay, so update our path m_LongPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y }); return true; } bool CCmpUnitMotion::PathingUpdateNeeded(const CFixedVector2D& from) const { if (m_MoveRequest.m_Type == MoveRequest::NONE) return false; CFixedVector2D targetPos; if (!ComputeTargetPosition(targetPos)) return false; if (m_FollowKnownImperfectPathCountdown > 0 && (!m_LongPath.m_Waypoints.empty() || !m_ShortPath.m_Waypoints.empty())) return false; if (PossiblyAtDestination()) return false; // Get the obstruction shape and translate it where we estimate the target to be. ICmpObstructionManager::ObstructionSquare estimatedTargetShape; if (m_MoveRequest.m_Type == MoveRequest::ENTITY) { CmpPtr cmpTargetObstruction(GetSimContext(), m_MoveRequest.m_Entity); if (cmpTargetObstruction) cmpTargetObstruction->GetObstructionSquare(estimatedTargetShape); } estimatedTargetShape.x = targetPos.X; estimatedTargetShape.z = targetPos.Y; CmpPtr cmpObstruction(GetEntityHandle()); ICmpObstructionManager::ObstructionSquare shape; if (cmpObstruction) cmpObstruction->GetObstructionSquare(shape); // Translate our own obstruction shape to our last waypoint or our current position, lacking that. if (m_LongPath.m_Waypoints.empty() && m_ShortPath.m_Waypoints.empty()) { shape.x = from.X; shape.z = from.Y; } else { const Waypoint& lastWaypoint = m_LongPath.m_Waypoints.empty() ? m_ShortPath.m_Waypoints.front() : m_LongPath.m_Waypoints.front(); shape.x = lastWaypoint.x; shape.z = lastWaypoint.z; } CmpPtr cmpObstructionManager(GetSystemEntity()); ENSURE(cmpObstructionManager); // Increase the ranges with distance, to avoid recomputing every turn against units that are moving and far-away for example. entity_pos_t distance = (from - CFixedVector2D(estimatedTargetShape.x, estimatedTargetShape.z)).Length(); // TODO: it could be worth computing this based on time to collision instead of linear distance. entity_pos_t minRange = std::max(m_MoveRequest.m_MinRange - distance / TARGET_UNCERTAINTY_MULTIPLIER, entity_pos_t::Zero()); entity_pos_t maxRange = m_MoveRequest.m_MaxRange < entity_pos_t::Zero() ? m_MoveRequest.m_MaxRange : m_MoveRequest.m_MaxRange + distance / TARGET_UNCERTAINTY_MULTIPLIER; if (cmpObstructionManager->AreShapesInRange(shape, estimatedTargetShape, minRange, maxRange, false)) return false; return true; } void CCmpUnitMotion::FaceTowardsPoint(entity_pos_t x, entity_pos_t z) { CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return; CFixedVector2D pos = cmpPosition->GetPosition2D(); FaceTowardsPointFromPos(pos, x, z); } void CCmpUnitMotion::FaceTowardsPointFromPos(const CFixedVector2D& pos, entity_pos_t x, entity_pos_t z) { CFixedVector2D target(x, z); CFixedVector2D offset = target - pos; if (!offset.IsZero()) { entity_angle_t angle = atan2_approx(offset.X, offset.Y); CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition) return; cmpPosition->TurnTo(angle); } } // The pathfinder cannot go to "rounded rectangles" goals, which are what happens with square targets and a non-null range. // Depending on what the best approximation is, we either pretend the target is a circle or a square. // One needs to be careful that the approximated geometry will be in the range. bool CCmpUnitMotion::ShouldTreatTargetAsCircle(entity_pos_t range, entity_pos_t circleRadius) const { // Given a square, plus a target range we should reach, the shape at that distance // is a round-cornered square which we can approximate as either a circle or as a square. // Previously, we used the shape that minimized the worst-case error. // However that is unsage in some situations. So let's be less clever and // just check if our range is at least three times bigger than the circleradius return (range > circleRadius*3); } bool CCmpUnitMotion::ComputeGoal(PathGoal& out, const MoveRequest& moveRequest) const { if (moveRequest.m_Type == MoveRequest::NONE) return false; CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return false; CFixedVector2D pos = cmpPosition->GetPosition2D(); CFixedVector2D targetPosition; if (!ComputeTargetPosition(targetPosition, moveRequest)) return false; ICmpObstructionManager::ObstructionSquare targetObstruction; if (moveRequest.m_Type == MoveRequest::ENTITY) { CmpPtr cmpTargetObstruction(GetSimContext(), moveRequest.m_Entity); if (cmpTargetObstruction) cmpTargetObstruction->GetObstructionSquare(targetObstruction); } targetObstruction.x = targetPosition.X; targetObstruction.z = targetPosition.Y; ICmpObstructionManager::ObstructionSquare obstruction; CmpPtr cmpObstruction(GetEntityHandle()); if (cmpObstruction) cmpObstruction->GetObstructionSquare(obstruction); else { obstruction.x = pos.X; obstruction.z = pos.Y; } CmpPtr cmpObstructionManager(GetSystemEntity()); ENSURE(cmpObstructionManager); entity_pos_t distance = cmpObstructionManager->DistanceBetweenShapes(obstruction, targetObstruction); out.x = targetObstruction.x; out.z = targetObstruction.z; out.hw = targetObstruction.hw; out.hh = targetObstruction.hh; out.u = targetObstruction.u; out.v = targetObstruction.v; if (moveRequest.m_MinRange > fixed::Zero() || moveRequest.m_MaxRange > fixed::Zero() || targetObstruction.hw > fixed::Zero()) out.type = PathGoal::SQUARE; else { out.type = PathGoal::POINT; return true; } entity_pos_t circleRadius = CFixedVector2D(targetObstruction.hw, targetObstruction.hh).Length(); // TODO: because we cannot move to rounded rectangles, we have to make conservative approximations. // This means we might end up in a situation where cons(max-range) < min range < max range < cons(min-range) // When going outside of the min-range or inside the max-range, the unit will still go through the correct range // but if it moves fast enough, this might not be picked up by PossiblyAtDestination(). // Fixing this involves moving to rounded rectangles, or checking more often in PerformMove(). // In the meantime, one should avoid that 'Speed over a turn' > MaxRange - MinRange, in case where // min-range is not 0 and max-range is not infinity. if (distance < moveRequest.m_MinRange) { // Distance checks are nearest edge to nearest edge, so we need to account for our clearance // and we must make sure diagonals also fit so multiply by slightly more than sqrt(2) entity_pos_t goalDistance = moveRequest.m_MinRange + m_Clearance * 3 / 2; if (ShouldTreatTargetAsCircle(moveRequest.m_MinRange, circleRadius)) { // We are safely away from the obstruction itself if we are away from the circumscribing circle out.type = PathGoal::INVERTED_CIRCLE; out.hw = circleRadius + goalDistance; } else { out.type = PathGoal::INVERTED_SQUARE; out.hw = targetObstruction.hw + goalDistance; out.hh = targetObstruction.hh + goalDistance; } } else if (moveRequest.m_MaxRange >= fixed::Zero() && distance > moveRequest.m_MaxRange) { if (ShouldTreatTargetAsCircle(moveRequest.m_MaxRange, circleRadius)) { entity_pos_t goalDistance = moveRequest.m_MaxRange; // We must go in-range of the inscribed circle, not the circumscribing circle. circleRadius = std::min(targetObstruction.hw, targetObstruction.hh); out.type = PathGoal::CIRCLE; out.hw = circleRadius + goalDistance; } else { // The target is large relative to our range, so treat it as a square and // get close enough that the diagonals come within range entity_pos_t goalDistance = moveRequest.m_MaxRange * 2 / 3; // multiply by slightly less than 1/sqrt(2) out.type = PathGoal::SQUARE; entity_pos_t delta = std::max(goalDistance, m_Clearance + entity_pos_t::FromInt(4)/16); // ensure it's far enough to not intersect the building itself out.hw = targetObstruction.hw + delta; out.hh = targetObstruction.hh + delta; } } // Do nothing in particular in case we are already in range. return true; } void CCmpUnitMotion::ComputePathToGoal(const CFixedVector2D& from, const PathGoal& goal) { #if DISABLE_PATHFINDER { CmpPtr cmpPathfinder (GetSimContext(), SYSTEM_ENTITY); CFixedVector2D goalPos = m_FinalGoal.NearestPointOnGoal(from); m_LongPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.clear(); m_ShortPath.m_Waypoints.emplace_back(Waypoint{ goalPos.X, goalPos.Y }); return; } #endif // If the target is close enough, hope that we'll be able to go straight next turn. if (!ShouldAlternatePathfinder() && TryGoingStraightToTarget(from, false)) { // NB: since we may fail to move straight next turn, we should edge our bets. // Since the 'go straight' logic currently fires only if there's no short path, // we'll compute a long path regardless to make sure _that_ stays up to date. // (it's also extremely likely to be very fast to compute, so no big deal). m_ShortPath.m_Waypoints.clear(); RequestLongPath(from, goal); return; } // Otherwise we need to compute a path. // If it's close then just do a short path, not a long path // TODO: If it's close on the opposite side of a river then we really // need a long path, so we shouldn't simply check linear distance // the check is arbitrary but should be a reasonably small distance. // We want to occasionally compute a long path if we're computing short-paths, because the short path domain // is bounded and thus it can't around very large static obstacles. // Likewise, we want to compile a short-path occasionally when the target is far because we might be stuck // on a navcell surrounded by impassable navcells, but the short-pathfinder could move us out of there. bool shortPath = InShortPathRange(goal, from); if (ShouldAlternatePathfinder()) shortPath = !shortPath; if (shortPath) { m_LongPath.m_Waypoints.clear(); // Extend the range so that our first path is probably valid. RequestShortPath(from, goal, true); } else { m_ShortPath.m_Waypoints.clear(); RequestLongPath(from, goal); } } void CCmpUnitMotion::RequestLongPath(const CFixedVector2D& from, const PathGoal& goal) { CmpPtr cmpPathfinder(GetSystemEntity()); if (!cmpPathfinder) return; // this is by how much our waypoints will be apart at most. // this value here seems sensible enough. PathGoal improvedGoal = goal; improvedGoal.maxdist = SHORT_PATH_MIN_SEARCH_RANGE - entity_pos_t::FromInt(1); cmpPathfinder->SetDebugPath(from.X, from.Y, improvedGoal, m_PassClass); m_ExpectedPathTicket.m_Type = Ticket::LONG_PATH; m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputePathAsync(from.X, from.Y, improvedGoal, m_PassClass, GetEntityId()); } void CCmpUnitMotion::RequestShortPath(const CFixedVector2D &from, const PathGoal& goal, bool extendRange) { CmpPtr cmpPathfinder(GetSystemEntity()); if (!cmpPathfinder) return; entity_pos_t searchRange = ShortPathSearchRange(); if (extendRange) { CFixedVector2D dist(from.X - goal.x, from.Y - goal.z); if (dist.CompareLength(searchRange - entity_pos_t::FromInt(1)) >= 0) { searchRange = dist.Length() + fixed::FromInt(1); if (searchRange > SHORT_PATH_MAX_SEARCH_RANGE) searchRange = SHORT_PATH_MAX_SEARCH_RANGE; } } m_ExpectedPathTicket.m_Type = Ticket::SHORT_PATH; m_ExpectedPathTicket.m_Ticket = cmpPathfinder->ComputeShortPathAsync(from.X, from.Y, m_Clearance, searchRange, goal, m_PassClass, true, GetGroup(), GetEntityId()); } bool CCmpUnitMotion::MoveTo(MoveRequest request) { PROFILE("MoveTo"); if (request.m_MinRange == request.m_MaxRange && !request.m_MinRange.IsZero()) LOGWARNING("MaxRange must be larger than MinRange; See CCmpUnitMotion.cpp for more information"); CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return false; PathGoal goal; if (!ComputeGoal(goal, request)) return false; m_MoveRequest = request; m_FailedMovements = 0; m_FollowKnownImperfectPathCountdown = 0; ComputePathToGoal(cmpPosition->GetPosition2D(), goal); return true; } bool CCmpUnitMotion::IsTargetRangeReachable(entity_id_t target, entity_pos_t minRange, entity_pos_t maxRange) { CmpPtr cmpPosition(GetEntityHandle()); if (!cmpPosition || !cmpPosition->IsInWorld()) return false; MoveRequest request(target, minRange, maxRange); PathGoal goal; if (!ComputeGoal(goal, request)) return false; CmpPtr cmpPathfinder(GetSimContext(), SYSTEM_ENTITY); CFixedVector2D pos = cmpPosition->GetPosition2D(); return cmpPathfinder->IsGoalReachable(pos.X, pos.Y, goal, m_PassClass); } void CCmpUnitMotion::RenderPath(const WaypointPath& path, std::vector& lines, CColor color) { bool floating = false; CmpPtr cmpPosition(GetEntityHandle()); if (cmpPosition) floating = cmpPosition->CanFloat(); lines.clear(); std::vector waypointCoords; for (size_t i = 0; i < path.m_Waypoints.size(); ++i) { float x = path.m_Waypoints[i].x.ToFloat(); float z = path.m_Waypoints[i].z.ToFloat(); waypointCoords.push_back(x); waypointCoords.push_back(z); lines.push_back(SOverlayLine()); lines.back().m_Color = color; SimRender::ConstructSquareOnGround(GetSimContext(), x, z, 1.0f, 1.0f, 0.0f, lines.back(), floating); } float x = cmpPosition->GetPosition2D().X.ToFloat(); float z = cmpPosition->GetPosition2D().Y.ToFloat(); waypointCoords.push_back(x); waypointCoords.push_back(z); lines.push_back(SOverlayLine()); lines.back().m_Color = color; SimRender::ConstructLineOnGround(GetSimContext(), waypointCoords, lines.back(), floating); } void CCmpUnitMotion::RenderSubmit(SceneCollector& collector) { if (!m_DebugOverlayEnabled) return; RenderPath(m_LongPath, m_DebugOverlayLongPathLines, OVERLAY_COLOR_LONG_PATH); RenderPath(m_ShortPath, m_DebugOverlayShortPathLines, OVERLAY_COLOR_SHORT_PATH); for (size_t i = 0; i < m_DebugOverlayLongPathLines.size(); ++i) collector.Submit(&m_DebugOverlayLongPathLines[i]); for (size_t i = 0; i < m_DebugOverlayShortPathLines.size(); ++i) collector.Submit(&m_DebugOverlayShortPathLines[i]); } #endif // INCLUDED_CCMPUNITMOTION