Index: ps/trunk/source/graphics/ShaderProgram.cpp =================================================================== --- ps/trunk/source/graphics/ShaderProgram.cpp (revision 26166) +++ ps/trunk/source/graphics/ShaderProgram.cpp (revision 26167) @@ -1,940 +1,941 @@ /* Copyright (C) 2021 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "ShaderProgram.h" #include "graphics/Color.h" #include "graphics/PreprocessorWrapper.h" #include "graphics/ShaderManager.h" #include "graphics/TextureManager.h" #include "lib/timer.h" #include "lib/res/graphics/ogl_tex.h" #include "maths/Matrix3D.h" #include "maths/Vector3D.h" #include "ps/CLogger.h" #include "ps/Filesystem.h" #include #if !CONFIG2_GLES class CShaderProgramARB : public CShaderProgram { public: CShaderProgramARB(const VfsPath& vertexFile, const VfsPath& fragmentFile, const CShaderDefines& defines, const std::map& vertexIndexes, const std::map& fragmentIndexes, int streamflags) : CShaderProgram(streamflags), m_VertexFile(vertexFile), m_FragmentFile(fragmentFile), m_Defines(defines), m_VertexIndexes(vertexIndexes), m_FragmentIndexes(fragmentIndexes) { glGenProgramsARB(1, &m_VertexProgram); glGenProgramsARB(1, &m_FragmentProgram); } ~CShaderProgramARB() { Unload(); glDeleteProgramsARB(1, &m_VertexProgram); glDeleteProgramsARB(1, &m_FragmentProgram); } bool Compile(GLuint target, const char* targetName, GLuint program, const VfsPath& file, const CStr& code) { ogl_WarnIfError(); glBindProgramARB(target, program); ogl_WarnIfError(); glProgramStringARB(target, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)code.length(), code.c_str()); if (ogl_SquelchError(GL_INVALID_OPERATION)) { GLint errPos = 0; glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &errPos); int errLine = std::count(code.begin(), code.begin() + std::min((int)code.length(), errPos + 1), '\n') + 1; char* errStr = (char*)glGetString(GL_PROGRAM_ERROR_STRING_ARB); LOGERROR("Failed to compile %s program '%s' (line %d):\n%s", targetName, file.string8(), errLine, errStr); return false; } glBindProgramARB(target, 0); ogl_WarnIfError(); return true; } void Reload() override { Unload(); CVFSFile vertexFile; if (vertexFile.Load(g_VFS, m_VertexFile) != PSRETURN_OK) return; CVFSFile fragmentFile; if (fragmentFile.Load(g_VFS, m_FragmentFile) != PSRETURN_OK) return; CPreprocessorWrapper preprocessor; preprocessor.AddDefines(m_Defines); CStr vertexCode = preprocessor.Preprocess(vertexFile.GetAsString()); CStr fragmentCode = preprocessor.Preprocess(fragmentFile.GetAsString()); if (!Compile(GL_VERTEX_PROGRAM_ARB, "vertex", m_VertexProgram, m_VertexFile, vertexCode)) return; if (!Compile(GL_FRAGMENT_PROGRAM_ARB, "fragment", m_FragmentProgram, m_FragmentFile, fragmentCode)) return; m_IsValid = true; } void Unload() { m_IsValid = false; } void Bind() override { glEnable(GL_VERTEX_PROGRAM_ARB); glEnable(GL_FRAGMENT_PROGRAM_ARB); glBindProgramARB(GL_VERTEX_PROGRAM_ARB, m_VertexProgram); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, m_FragmentProgram); BindClientStates(); } void Unbind() override { glDisable(GL_VERTEX_PROGRAM_ARB); glDisable(GL_FRAGMENT_PROGRAM_ARB); glBindProgramARB(GL_VERTEX_PROGRAM_ARB, 0); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0); UnbindClientStates(); // TODO: should unbind textures, probably } int GetUniformVertexIndex(CStrIntern id) { std::map::iterator it = m_VertexIndexes.find(id); if (it == m_VertexIndexes.end()) return -1; return it->second; } frag_index_pair_t GetUniformFragmentIndex(CStrIntern id) { std::map::iterator it = m_FragmentIndexes.find(id); if (it == m_FragmentIndexes.end()) return std::make_pair(-1, 0); return it->second; } Binding GetTextureBinding(texture_id_t id) override { frag_index_pair_t fPair = GetUniformFragmentIndex(id); int index = fPair.first; if (index == -1) return Binding(); else return Binding((int)fPair.second, index); } void BindTexture(texture_id_t id, GLuint tex) override { frag_index_pair_t fPair = GetUniformFragmentIndex(id); int index = fPair.first; if (index != -1) { glActiveTextureARB(GL_TEXTURE0 + index); glBindTexture(fPair.second, tex); } } void BindTexture(Binding id, GLuint tex) override { int index = id.second; if (index != -1) { glActiveTextureARB(GL_TEXTURE0 + index); glBindTexture(id.first, tex); } } Binding GetUniformBinding(uniform_id_t id) override { return Binding(GetUniformVertexIndex(id), GetUniformFragmentIndex(id).first); } void Uniform(Binding id, float v0, float v1, float v2, float v3) override { if (id.first != -1) glProgramLocalParameter4fARB(GL_VERTEX_PROGRAM_ARB, (GLuint)id.first, v0, v1, v2, v3); if (id.second != -1) glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, (GLuint)id.second, v0, v1, v2, v3); } void Uniform(Binding id, const CMatrix3D& v) override { if (id.first != -1) { glProgramLocalParameter4fARB(GL_VERTEX_PROGRAM_ARB, (GLuint)id.first+0, v._11, v._12, v._13, v._14); glProgramLocalParameter4fARB(GL_VERTEX_PROGRAM_ARB, (GLuint)id.first+1, v._21, v._22, v._23, v._24); glProgramLocalParameter4fARB(GL_VERTEX_PROGRAM_ARB, (GLuint)id.first+2, v._31, v._32, v._33, v._34); glProgramLocalParameter4fARB(GL_VERTEX_PROGRAM_ARB, (GLuint)id.first+3, v._41, v._42, v._43, v._44); } if (id.second != -1) { glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, (GLuint)id.second+0, v._11, v._12, v._13, v._14); glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, (GLuint)id.second+1, v._21, v._22, v._23, v._24); glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, (GLuint)id.second+2, v._31, v._32, v._33, v._34); glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, (GLuint)id.second+3, v._41, v._42, v._43, v._44); } } void Uniform(Binding id, size_t count, const CMatrix3D* v) override { ENSURE(count == 1); Uniform(id, v[0]); } void Uniform(Binding id, size_t count, const float* v) override { ENSURE(count == 4); Uniform(id, v[0], v[1], v[2], v[3]); } std::vector GetFileDependencies() const override { return {m_VertexFile, m_FragmentFile}; } private: VfsPath m_VertexFile; VfsPath m_FragmentFile; CShaderDefines m_Defines; GLuint m_VertexProgram; GLuint m_FragmentProgram; std::map m_VertexIndexes; // pair contains std::map m_FragmentIndexes; }; #endif // #if !CONFIG2_GLES ////////////////////////////////////////////////////////////////////////// TIMER_ADD_CLIENT(tc_ShaderGLSLCompile); TIMER_ADD_CLIENT(tc_ShaderGLSLLink); class CShaderProgramGLSL : public CShaderProgram { public: CShaderProgramGLSL(const VfsPath& vertexFile, const VfsPath& fragmentFile, const CShaderDefines& defines, const std::map& vertexAttribs, int streamflags) : CShaderProgram(streamflags), m_VertexFile(vertexFile), m_FragmentFile(fragmentFile), m_Defines(defines), m_VertexAttribs(vertexAttribs) { m_Program = 0; m_VertexShader = glCreateShaderObjectARB(GL_VERTEX_SHADER); m_FragmentShader = glCreateShaderObjectARB(GL_FRAGMENT_SHADER); m_FileDependencies = {m_VertexFile, m_FragmentFile}; } ~CShaderProgramGLSL() { Unload(); glDeleteShader(m_VertexShader); glDeleteShader(m_FragmentShader); } bool Compile(GLhandleARB shader, const VfsPath& file, const CStr& code) { TIMER_ACCRUE(tc_ShaderGLSLCompile); ogl_WarnIfError(); const char* code_string = code.c_str(); GLint code_length = code.length(); glShaderSourceARB(shader, 1, &code_string, &code_length); glCompileShaderARB(shader); GLint ok = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &ok); GLint length = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &length); // Apparently sometimes GL_INFO_LOG_LENGTH is incorrectly reported as 0 // (http://code.google.com/p/android/issues/detail?id=9953) if (!ok && length == 0) length = 4096; if (length > 1) { char* infolog = new char[length]; glGetShaderInfoLog(shader, length, NULL, infolog); if (ok) LOGMESSAGE("Info when compiling shader '%s':\n%s", file.string8(), infolog); else LOGERROR("Failed to compile shader '%s':\n%s", file.string8(), infolog); delete[] infolog; } ogl_WarnIfError(); return (ok ? true : false); } bool Link() { TIMER_ACCRUE(tc_ShaderGLSLLink); ENSURE(!m_Program); m_Program = glCreateProgramObjectARB(); glAttachObjectARB(m_Program, m_VertexShader); ogl_WarnIfError(); glAttachObjectARB(m_Program, m_FragmentShader); ogl_WarnIfError(); // Set up the attribute bindings explicitly, since apparently drivers // don't always pick the most efficient bindings automatically, // and also this lets us hardcode indexes into VertexPointer etc for (std::map::iterator it = m_VertexAttribs.begin(); it != m_VertexAttribs.end(); ++it) glBindAttribLocationARB(m_Program, it->second, it->first.c_str()); glLinkProgramARB(m_Program); GLint ok = 0; glGetProgramiv(m_Program, GL_LINK_STATUS, &ok); GLint length = 0; glGetProgramiv(m_Program, GL_INFO_LOG_LENGTH, &length); if (!ok && length == 0) length = 4096; if (length > 1) { char* infolog = new char[length]; glGetProgramInfoLog(m_Program, length, NULL, infolog); if (ok) LOGMESSAGE("Info when linking program '%s'+'%s':\n%s", m_VertexFile.string8(), m_FragmentFile.string8(), infolog); else LOGERROR("Failed to link program '%s'+'%s':\n%s", m_VertexFile.string8(), m_FragmentFile.string8(), infolog); delete[] infolog; } ogl_WarnIfError(); if (!ok) return false; m_Uniforms.clear(); m_Samplers.clear(); Bind(); ogl_WarnIfError(); GLint numUniforms = 0; glGetProgramiv(m_Program, GL_ACTIVE_UNIFORMS, &numUniforms); ogl_WarnIfError(); for (GLint i = 0; i < numUniforms; ++i) { char name[256] = {0}; GLsizei nameLength = 0; GLint size = 0; GLenum type = 0; glGetActiveUniformARB(m_Program, i, ARRAY_SIZE(name), &nameLength, &size, &type, name); ogl_WarnIfError(); GLint loc = glGetUniformLocationARB(m_Program, name); CStrIntern nameIntern(name); m_Uniforms[nameIntern] = std::make_pair(loc, type); // Assign sampler uniforms to sequential texture units if (type == GL_SAMPLER_2D || type == GL_SAMPLER_CUBE #if !CONFIG2_GLES || type == GL_SAMPLER_2D_SHADOW #endif ) { int unit = (int)m_Samplers.size(); m_Samplers[nameIntern].first = (type == GL_SAMPLER_CUBE ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D); m_Samplers[nameIntern].second = unit; glUniform1iARB(loc, unit); // link uniform to unit ogl_WarnIfError(); } } // TODO: verify that we're not using more samplers than is supported Unbind(); ogl_WarnIfError(); return true; } void Reload() override { Unload(); CVFSFile vertexFile; if (vertexFile.Load(g_VFS, m_VertexFile) != PSRETURN_OK) return; CVFSFile fragmentFile; if (fragmentFile.Load(g_VFS, m_FragmentFile) != PSRETURN_OK) return; std::vector newFileDependencies = {m_VertexFile, m_FragmentFile}; CPreprocessorWrapper preprocessor([&newFileDependencies](const CStr& includePath, CStr& out) -> bool { const VfsPath includeFilePath(L"shaders/glsl/" + wstring_from_utf8(includePath)); // Add dependencies anyway to reload the shader when the file is // appeared. newFileDependencies.push_back(includeFilePath); CVFSFile includeFile; if (includeFile.Load(g_VFS, includeFilePath) != PSRETURN_OK) return false; out = includeFile.GetAsString(); return true; }); preprocessor.AddDefines(m_Defines); #if CONFIG2_GLES // GLES defines the macro "GL_ES" in its GLSL preprocessor, // but since we run our own preprocessor first, we need to explicitly // define it here preprocessor.AddDefine("GL_ES", "1"); #endif CStr vertexCode = preprocessor.Preprocess(vertexFile.GetAsString()); CStr fragmentCode = preprocessor.Preprocess(fragmentFile.GetAsString()); m_FileDependencies = std::move(newFileDependencies); if (vertexCode.empty()) LOGERROR("Failed to preprocess vertex shader: '%s'", m_VertexFile.string8()); if (fragmentCode.empty()) LOGERROR("Failed to preprocess fragment shader: '%s'", m_FragmentFile.string8()); #if CONFIG2_GLES // Ugly hack to replace desktop GLSL 1.10/1.20 with GLSL ES 1.00, // and also to set default float precision for fragment shaders vertexCode.Replace("#version 110\n", "#version 100\n"); vertexCode.Replace("#version 110\r\n", "#version 100\n"); vertexCode.Replace("#version 120\n", "#version 100\n"); vertexCode.Replace("#version 120\r\n", "#version 100\n"); fragmentCode.Replace("#version 110\n", "#version 100\nprecision mediump float;\n"); fragmentCode.Replace("#version 110\r\n", "#version 100\nprecision mediump float;\n"); fragmentCode.Replace("#version 120\n", "#version 100\nprecision mediump float;\n"); fragmentCode.Replace("#version 120\r\n", "#version 100\nprecision mediump float;\n"); #endif if (!Compile(m_VertexShader, m_VertexFile, vertexCode)) return; if (!Compile(m_FragmentShader, m_FragmentFile, fragmentCode)) return; if (!Link()) return; m_IsValid = true; } void Unload() { m_IsValid = false; if (m_Program) glDeleteProgram(m_Program); m_Program = 0; // The shader objects can be reused and don't need to be deleted here } void Bind() override { glUseProgramObjectARB(m_Program); for (std::map::iterator it = m_VertexAttribs.begin(); it != m_VertexAttribs.end(); ++it) glEnableVertexAttribArrayARB(it->second); } void Unbind() override { glUseProgramObjectARB(0); for (std::map::iterator it = m_VertexAttribs.begin(); it != m_VertexAttribs.end(); ++it) glDisableVertexAttribArrayARB(it->second); // TODO: should unbind textures, probably } Binding GetTextureBinding(texture_id_t id) override { std::map >::iterator it = m_Samplers.find(CStrIntern(id)); if (it == m_Samplers.end()) return Binding(); else return Binding((int)it->second.first, it->second.second); } void BindTexture(texture_id_t id, GLuint tex) override { std::map >::iterator it = m_Samplers.find(CStrIntern(id)); if (it == m_Samplers.end()) return; glActiveTextureARB(GL_TEXTURE0 + it->second.second); glBindTexture(it->second.first, tex); } void BindTexture(Binding id, GLuint tex) override { if (id.second == -1) return; glActiveTextureARB(GL_TEXTURE0 + id.second); glBindTexture(id.first, tex); } Binding GetUniformBinding(uniform_id_t id) override { std::map >::iterator it = m_Uniforms.find(id); if (it == m_Uniforms.end()) return Binding(); else return Binding(it->second.first, (int)it->second.second); } void Uniform(Binding id, float v0, float v1, float v2, float v3) override { if (id.first != -1) { if (id.second == GL_FLOAT) glUniform1fARB(id.first, v0); else if (id.second == GL_FLOAT_VEC2) glUniform2fARB(id.first, v0, v1); else if (id.second == GL_FLOAT_VEC3) glUniform3fARB(id.first, v0, v1, v2); else if (id.second == GL_FLOAT_VEC4) glUniform4fARB(id.first, v0, v1, v2, v3); else LOGERROR("CShaderProgramGLSL::Uniform(): Invalid uniform type (expected float, vec2, vec3, vec4)"); } } void Uniform(Binding id, const CMatrix3D& v) override { if (id.first != -1) { if (id.second == GL_FLOAT_MAT4) glUniformMatrix4fvARB(id.first, 1, GL_FALSE, &v._11); else LOGERROR("CShaderProgramGLSL::Uniform(): Invalid uniform type (expected mat4)"); } } void Uniform(Binding id, size_t count, const CMatrix3D* v) override { if (id.first != -1) { if (id.second == GL_FLOAT_MAT4) glUniformMatrix4fvARB(id.first, count, GL_FALSE, &v->_11); else LOGERROR("CShaderProgramGLSL::Uniform(): Invalid uniform type (expected mat4)"); } } void Uniform(Binding id, size_t count, const float* v) override { if (id.first != -1) { if (id.second == GL_FLOAT) glUniform1fvARB(id.first, count, v); else LOGERROR("CShaderProgramGLSL::Uniform(): Invalid uniform type (expected float)"); } } // Map the various fixed-function Pointer functions onto generic vertex attributes // (matching the attribute indexes from ShaderManager's ParseAttribSemantics): void VertexPointer(GLint size, GLenum type, GLsizei stride, const void* pointer) override { glVertexAttribPointerARB(0, size, type, GL_FALSE, stride, pointer); m_ValidStreams |= STREAM_POS; } void NormalPointer(GLenum type, GLsizei stride, const void* pointer) override { glVertexAttribPointerARB(2, 3, type, (type == GL_FLOAT ? GL_FALSE : GL_TRUE), stride, pointer); m_ValidStreams |= STREAM_NORMAL; } void ColorPointer(GLint size, GLenum type, GLsizei stride, const void* pointer) override { glVertexAttribPointerARB(3, size, type, (type == GL_FLOAT ? GL_FALSE : GL_TRUE), stride, pointer); m_ValidStreams |= STREAM_COLOR; } void TexCoordPointer(GLenum texture, GLint size, GLenum type, GLsizei stride, const void* pointer) override { glVertexAttribPointerARB(8 + texture - GL_TEXTURE0, size, type, GL_FALSE, stride, pointer); m_ValidStreams |= STREAM_UV0 << (texture - GL_TEXTURE0); } void VertexAttribPointer(attrib_id_t id, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const void* pointer) override { std::map::iterator it = m_VertexAttribs.find(id); if (it != m_VertexAttribs.end()) { glVertexAttribPointerARB(it->second, size, type, normalized, stride, pointer); } } void VertexAttribIPointer(attrib_id_t id, GLint size, GLenum type, GLsizei stride, const void* pointer) override { std::map::iterator it = m_VertexAttribs.find(id); if (it != m_VertexAttribs.end()) { #if CONFIG2_GLES + UNUSED2(size); UNUSED2(type); UNUSED2(stride); UNUSED2(pointer); debug_warn(L"glVertexAttribIPointer not supported on GLES"); #else glVertexAttribIPointerEXT(it->second, size, type, stride, pointer); #endif } } std::vector GetFileDependencies() const override { return m_FileDependencies; } private: VfsPath m_VertexFile; VfsPath m_FragmentFile; std::vector m_FileDependencies; CShaderDefines m_Defines; std::map m_VertexAttribs; GLhandleARB m_Program; GLhandleARB m_VertexShader; GLhandleARB m_FragmentShader; std::map > m_Uniforms; std::map > m_Samplers; // texture target & unit chosen for each uniform sampler }; ////////////////////////////////////////////////////////////////////////// CShaderProgram::CShaderProgram(int streamflags) : m_IsValid(false), m_StreamFlags(streamflags), m_ValidStreams(0) { } #if CONFIG2_GLES /*static*/ CShaderProgram* CShaderProgram::ConstructARB(const VfsPath& vertexFile, const VfsPath& fragmentFile, const CShaderDefines& UNUSED(defines), const std::map& UNUSED(vertexIndexes), const std::map& UNUSED(fragmentIndexes), int UNUSED(streamflags)) { LOGERROR("CShaderProgram::ConstructARB: '%s'+'%s': ARB shaders not supported on this device", vertexFile.string8(), fragmentFile.string8()); return NULL; } #else /*static*/ CShaderProgram* CShaderProgram::ConstructARB(const VfsPath& vertexFile, const VfsPath& fragmentFile, const CShaderDefines& defines, const std::map& vertexIndexes, const std::map& fragmentIndexes, int streamflags) { return new CShaderProgramARB(vertexFile, fragmentFile, defines, vertexIndexes, fragmentIndexes, streamflags); } #endif /*static*/ CShaderProgram* CShaderProgram::ConstructGLSL(const VfsPath& vertexFile, const VfsPath& fragmentFile, const CShaderDefines& defines, const std::map& vertexAttribs, int streamflags) { return new CShaderProgramGLSL(vertexFile, fragmentFile, defines, vertexAttribs, streamflags); } bool CShaderProgram::IsValid() const { return m_IsValid; } int CShaderProgram::GetStreamFlags() const { return m_StreamFlags; } void CShaderProgram::BindTexture(texture_id_t id, const CTexturePtr& tex) { GLuint h; ogl_tex_get_texture_id(tex->GetHandle(), &h); BindTexture(id, h); } void CShaderProgram::BindTexture(Binding id, const CTexturePtr& tex) { GLuint h; ogl_tex_get_texture_id(tex->GetHandle(), &h); BindTexture(id, h); } void CShaderProgram::BindTexture(texture_id_t id, const Renderer::Backend::GL::CTexture* tex) { BindTexture(id, tex->GetHandle()); } void CShaderProgram::BindTexture(Binding id, const Renderer::Backend::GL::CTexture* tex) { BindTexture(id, tex->GetHandle()); } void CShaderProgram::Uniform(Binding id, int v) { Uniform(id, (float)v, (float)v, (float)v, (float)v); } void CShaderProgram::Uniform(Binding id, float v) { Uniform(id, v, v, v, v); } void CShaderProgram::Uniform(Binding id, float v0, float v1) { Uniform(id, v0, v1, 0.0f, 0.0f); } void CShaderProgram::Uniform(Binding id, const CVector3D& v) { Uniform(id, v.X, v.Y, v.Z, 0.0f); } void CShaderProgram::Uniform(Binding id, const CColor& v) { Uniform(id, v.r, v.g, v.b, v.a); } void CShaderProgram::Uniform(uniform_id_t id, int v) { Uniform(GetUniformBinding(id), (float)v, (float)v, (float)v, (float)v); } void CShaderProgram::Uniform(uniform_id_t id, float v) { Uniform(GetUniformBinding(id), v, v, v, v); } void CShaderProgram::Uniform(uniform_id_t id, float v0, float v1) { Uniform(GetUniformBinding(id), v0, v1, 0.0f, 0.0f); } void CShaderProgram::Uniform(uniform_id_t id, const CVector3D& v) { Uniform(GetUniformBinding(id), v.X, v.Y, v.Z, 0.0f); } void CShaderProgram::Uniform(uniform_id_t id, const CColor& v) { Uniform(GetUniformBinding(id), v.r, v.g, v.b, v.a); } void CShaderProgram::Uniform(uniform_id_t id, float v0, float v1, float v2, float v3) { Uniform(GetUniformBinding(id), v0, v1, v2, v3); } void CShaderProgram::Uniform(uniform_id_t id, const CMatrix3D& v) { Uniform(GetUniformBinding(id), v); } void CShaderProgram::Uniform(uniform_id_t id, size_t count, const CMatrix3D* v) { Uniform(GetUniformBinding(id), count, v); } void CShaderProgram::Uniform(uniform_id_t id, size_t count, const float* v) { Uniform(GetUniformBinding(id), count, v); } // These should all be overridden by CShaderProgramGLSL, and not used // if a non-GLSL shader was loaded instead: void CShaderProgram::VertexAttribPointer(attrib_id_t UNUSED(id), GLint UNUSED(size), GLenum UNUSED(type), GLboolean UNUSED(normalized), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("Shader type doesn't support VertexAttribPointer"); } void CShaderProgram::VertexAttribIPointer(attrib_id_t UNUSED(id), GLint UNUSED(size), GLenum UNUSED(type), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("Shader type doesn't support VertexAttribIPointer"); } #if CONFIG2_GLES // These should all be overridden by CShaderProgramGLSL // (GLES doesn't support any other types of shader program): void CShaderProgram::VertexPointer(GLint UNUSED(size), GLenum UNUSED(type), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("CShaderProgram::VertexPointer should be overridden"); } void CShaderProgram::NormalPointer(GLenum UNUSED(type), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("CShaderProgram::NormalPointer should be overridden"); } void CShaderProgram::ColorPointer(GLint UNUSED(size), GLenum UNUSED(type), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("CShaderProgram::ColorPointer should be overridden"); } void CShaderProgram::TexCoordPointer(GLenum UNUSED(texture), GLint UNUSED(size), GLenum UNUSED(type), GLsizei UNUSED(stride), const void* UNUSED(pointer)) { debug_warn("CShaderProgram::TexCoordPointer should be overridden"); } #else // These are overridden by CShaderProgramGLSL, but fixed-function and ARB shaders // both use the fixed-function vertex attribute pointers so we'll share their // definitions here: void CShaderProgram::VertexPointer(GLint size, GLenum type, GLsizei stride, const void* pointer) { glVertexPointer(size, type, stride, pointer); m_ValidStreams |= STREAM_POS; } void CShaderProgram::NormalPointer(GLenum type, GLsizei stride, const void* pointer) { glNormalPointer(type, stride, pointer); m_ValidStreams |= STREAM_NORMAL; } void CShaderProgram::ColorPointer(GLint size, GLenum type, GLsizei stride, const void* pointer) { glColorPointer(size, type, stride, pointer); m_ValidStreams |= STREAM_COLOR; } void CShaderProgram::TexCoordPointer(GLenum texture, GLint size, GLenum type, GLsizei stride, const void* pointer) { glClientActiveTextureARB(texture); glTexCoordPointer(size, type, stride, pointer); glClientActiveTextureARB(GL_TEXTURE0); m_ValidStreams |= STREAM_UV0 << (texture - GL_TEXTURE0); } void CShaderProgram::BindClientStates() { ENSURE(m_StreamFlags == (m_StreamFlags & (STREAM_POS|STREAM_NORMAL|STREAM_COLOR|STREAM_UV0|STREAM_UV1))); // Enable all the desired client states for non-GLSL rendering if (m_StreamFlags & STREAM_POS) glEnableClientState(GL_VERTEX_ARRAY); if (m_StreamFlags & STREAM_NORMAL) glEnableClientState(GL_NORMAL_ARRAY); if (m_StreamFlags & STREAM_COLOR) glEnableClientState(GL_COLOR_ARRAY); if (m_StreamFlags & STREAM_UV0) { glClientActiveTextureARB(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); } if (m_StreamFlags & STREAM_UV1) { glClientActiveTextureARB(GL_TEXTURE1); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0); } // Rendering code must subsequently call VertexPointer etc for all of the streams // that were activated in this function, else AssertPointersBound will complain // that some arrays were unspecified m_ValidStreams = 0; } void CShaderProgram::UnbindClientStates() { if (m_StreamFlags & STREAM_POS) glDisableClientState(GL_VERTEX_ARRAY); if (m_StreamFlags & STREAM_NORMAL) glDisableClientState(GL_NORMAL_ARRAY); if (m_StreamFlags & STREAM_COLOR) glDisableClientState(GL_COLOR_ARRAY); if (m_StreamFlags & STREAM_UV0) { glClientActiveTextureARB(GL_TEXTURE0); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } if (m_StreamFlags & STREAM_UV1) { glClientActiveTextureARB(GL_TEXTURE1); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0); } } #endif // !CONFIG2_GLES void CShaderProgram::AssertPointersBound() { ENSURE((m_StreamFlags & ~m_ValidStreams) == 0); } Index: ps/trunk/source/lib/external_libraries/opengles2_wrapper.h =================================================================== --- ps/trunk/source/lib/external_libraries/opengles2_wrapper.h (revision 26166) +++ ps/trunk/source/lib/external_libraries/opengles2_wrapper.h (revision 26167) @@ -1,116 +1,121 @@ /* Copyright (C) 2022 Wildfire Games. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef INCLUDED_GLES2_WRAPPER #define INCLUDED_GLES2_WRAPPER #include "lib/config2.h" // CONFIG2_GLES #if CONFIG2_GLES #include #define GL_FRAMEBUFFER_BINDING_EXT GL_FRAMEBUFFER_BINDING #define GL_FRAMEBUFFER_COMPLETE_EXT GL_FRAMEBUFFER_COMPLETE #define GL_FRAMEBUFFER_EXT GL_FRAMEBUFFER #define GL_WRITE_ONLY GL_WRITE_ONLY_OES #define GL_COLOR_ATTACHMENT0_EXT GL_COLOR_ATTACHMENT0 #define GL_DEPTH_ATTACHMENT_EXT GL_DEPTH_ATTACHMENT // Functions #define glActiveTextureARB glActiveTexture #define glBlendColorEXT glBlendColor #define glBlendEquationEXT glBlendEquation #define glCompressedTexImage2DARB glCompressedTexImage2D #define glAttachObjectARB glAttachShader #define glBindAttribLocationARB glBindAttribLocation #define glCompileShaderARB glCompileShader #define glCreateProgramObjectARB glCreateProgram #define glCreateShaderObjectARB glCreateShader #define glDisableVertexAttribArrayARB glDisableVertexAttribArray #define glEnableVertexAttribArrayARB glEnableVertexAttribArray #define glGetActiveUniformARB glGetActiveUniform #define glGetUniformLocationARB glGetUniformLocation #define glLinkProgramARB glLinkProgram #define glShaderSourceARB glShaderSource #define glUniform1fARB glUniform1f #define glUniform2fARB glUniform2f #define glUniform3fARB glUniform3f #define glUniform4fARB glUniform4f #define glUniform1iARB glUniform1i #define glUniform1fvARB glUniform1fv #define glUniformMatrix4fvARB glUniformMatrix4fv #define glUseProgramObjectARB glUseProgram #define glVertexAttribPointerARB glVertexAttribPointer #define glBindBufferARB glBindBuffer #define glBufferDataARB glBufferData #define glBufferSubDataARB glBufferSubData #define glDeleteBuffersARB glDeleteBuffers #define glGenBuffersARB glGenBuffers #define glBindFramebufferEXT glBindFramebuffer #define glCheckFramebufferStatusEXT glCheckFramebufferStatus #define glDeleteFramebuffersEXT glDeleteFramebuffers #define glFramebufferTexture2DEXT glFramebufferTexture2D #define glGenFramebuffersEXT glGenFramebuffers // Extensions // GL_OES_texture_border_clamp #define GL_CLAMP_TO_BORDER GL_CLAMP_TO_BORDER_OES #define GL_TEXTURE_BORDER_COLOR GL_TEXTURE_BORDER_COLOR_OES // GL_OES_rgb8_rgba8 #define GL_RGBA8 GL_RGBA8_OES // GL_OES_mapbuffer #define glMapBufferARB glMapBufferOES #define glUnmapBufferARB glUnmapBufferOES // GL_OES_depth32 #define GL_DEPTH_COMPONENT32 GL_DEPTH_COMPONENT32_OES // GL_KHR_debug -#define glPopDebugGroupKHR glPopDebugGroup -#define glPushDebugGroupKHR glPushDebugGroup -#define GL_DEBUG_SOURCE_API_KHR GL_DEBUG_SOURCE_API -#define GL_DEBUG_SOURCE_WINDOW_SYSTEM_KHR GL_DEBUG_SOURCE_WINDOW_SYSTEM -#define GL_DEBUG_SOURCE_SHADER_COMPILER_KHR GL_DEBUG_SOURCE_SHADER_COMPILER -#define GL_DEBUG_SOURCE_THIRD_PARTY_KHR GL_DEBUG_SOURCE_THIRD_PARTY -#define GL_DEBUG_SOURCE_APPLICATION_KHR GL_DEBUG_SOURCE_APPLICATION -#define GL_DEBUG_SOURCE_OTHER_KHR GL_DEBUG_SOURCE_OTHER -#define GL_DEBUG_TYPE_ERROR_KHR GL_DEBUG_TYPE_ERROR -#define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_KHR GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR -#define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_KHR GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR -#define GL_DEBUG_TYPE_PORTABILITY_KHR GL_DEBUG_TYPE_PORTABILITY -#define GL_DEBUG_TYPE_PERFORMANCE_KHR GL_DEBUG_TYPE_PERFORMANCE -#define GL_DEBUG_TYPE_OTHER_KHR GL_DEBUG_TYPE_OTHER -#define GL_DEBUG_TYPE_MARKER_KHR GL_DEBUG_TYPE_MARKER -#define GL_DEBUG_TYPE_PUSH_GROUP_KHR GL_DEBUG_TYPE_PUSH_GROUP -#define GL_DEBUG_TYPE_POP_GROUP_KHR GL_DEBUG_TYPE_POP_GROUP -#define GL_DEBUG_SEVERITY_HIGH_KHR GL_DEBUG_SEVERITY_HIGH -#define GL_DEBUG_SEVERITY_MEDIUM_KHR GL_DEBUG_SEVERITY_MEDIUM -#define GL_DEBUG_SEVERITY_LOW_KHR GL_DEBUG_SEVERITY_LOW -#define GL_DEBUG_SEVERITY_NOTIFICATION_KHR GL_DEBUG_SEVERITY_NOTIFICATION +#define glDebugMessageCallback glDebugMessageCallbackKHR +#define glDebugMessageControl glDebugMessageControlKHR +#define glObjectLabel glObjectLabelKHR +#define glPopDebugGroup glPopDebugGroupKHR +#define glPushDebugGroup glPushDebugGroupKHR + +#define GL_DEBUG_OUTPUT GL_DEBUG_OUTPUT_KHR +#define GL_DEBUG_SEVERITY_HIGH GL_DEBUG_SEVERITY_HIGH_KHR +#define GL_DEBUG_SEVERITY_LOW GL_DEBUG_SEVERITY_LOW_KHR +#define GL_DEBUG_SEVERITY_MEDIUM GL_DEBUG_SEVERITY_MEDIUM_KHR +#define GL_DEBUG_SEVERITY_NOTIFICATION GL_DEBUG_SEVERITY_NOTIFICATION_KHR +#define GL_DEBUG_SOURCE_API GL_DEBUG_SOURCE_API_KHR +#define GL_DEBUG_SOURCE_APPLICATION GL_DEBUG_SOURCE_APPLICATION_KHR +#define GL_DEBUG_SOURCE_OTHER GL_DEBUG_SOURCE_OTHER_KHR +#define GL_DEBUG_SOURCE_SHADER_COMPILER GL_DEBUG_SOURCE_SHADER_COMPILER_KHR +#define GL_DEBUG_SOURCE_THIRD_PARTY GL_DEBUG_SOURCE_THIRD_PARTY_KHR +#define GL_DEBUG_SOURCE_WINDOW_SYSTEM GL_DEBUG_SOURCE_WINDOW_SYSTEM_KHR +#define GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_KHR +#define GL_DEBUG_TYPE_ERROR GL_DEBUG_TYPE_ERROR_KHR +#define GL_DEBUG_TYPE_MARKER GL_DEBUG_TYPE_MARKER_KHR +#define GL_DEBUG_TYPE_OTHER GL_DEBUG_TYPE_OTHER_KHR +#define GL_DEBUG_TYPE_PERFORMANCE GL_DEBUG_TYPE_PERFORMANCE_KHR +#define GL_DEBUG_TYPE_POP_GROUP GL_DEBUG_TYPE_POP_GROUP_KHR +#define GL_DEBUG_TYPE_PORTABILITY GL_DEBUG_TYPE_PORTABILITY_KHR +#define GL_DEBUG_TYPE_PUSH_GROUP GL_DEBUG_TYPE_PUSH_GROUP_KHR +#define GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_KHR #endif // CONFIG2_GLES #endif // !INCLUDED_GLES2_WRAPPER Index: ps/trunk/source/renderer/DebugRenderer.cpp =================================================================== --- ps/trunk/source/renderer/DebugRenderer.cpp (revision 26166) +++ ps/trunk/source/renderer/DebugRenderer.cpp (revision 26167) @@ -1,409 +1,412 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "renderer/DebugRenderer.h" #include "graphics/Camera.h" #include "graphics/Color.h" #include "graphics/ShaderManager.h" #include "graphics/ShaderProgram.h" #include "lib/ogl.h" #include "maths/BoundingBoxAligned.h" #include "maths/Brush.h" #include "maths/Matrix3D.h" #include "maths/Vector3D.h" #include "ps/CStrInternStatic.h" #include "renderer/Renderer.h" #include "renderer/SceneRenderer.h" #include void CDebugRenderer::DrawLine(const CVector3D& from, const CVector3D& to, const CColor& color, const float width) { if (from == to) return; DrawLine({from, to}, color, width); } void CDebugRenderer::DrawLine(const std::vector& line, const CColor& color, const float width) { #if CONFIG2_GLES + UNUSED2(line); UNUSED2(color); UNUSED2(width); #warning TODO: implement drawing line for GLES #else CShaderTechniquePtr debugLineTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_line); debugLineTech->BeginPass(); const CCamera& viewCamera = g_Renderer.GetSceneRenderer().GetViewCamera(); CShaderProgramPtr debugLineShader = debugLineTech->GetShader(); debugLineShader->Uniform(str_transform, viewCamera.GetViewProjection()); debugLineShader->Uniform(str_color, color); const CVector3D cameraIn = viewCamera.GetOrientation().GetIn(); std::vector vertices; vertices.reserve(line.size() * 6 * 3); #define ADD(position) \ vertices.emplace_back((position).X); \ vertices.emplace_back((position).Y); \ vertices.emplace_back((position).Z); for (size_t idx = 1; idx < line.size(); ++idx) { const CVector3D from = line[idx - 1]; const CVector3D to = line[idx]; const CVector3D direction = (to - from).Normalized(); const CVector3D view = direction.Dot(cameraIn) > 0.9f ? CVector3D(0.0f, 1.0f, 0.0f) : cameraIn; const CVector3D offset = view.Cross(direction).Normalized() * width; ADD(from + offset) ADD(to - offset) ADD(to + offset) ADD(from + offset) ADD(from - offset) ADD(to - offset) } #undef ADD debugLineShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); debugLineShader->AssertPointersBound(); glDrawArrays(GL_TRIANGLES, 0, vertices.size() / 3); debugLineTech->EndPass(); #endif } void CDebugRenderer::DrawCircle(const CVector3D& origin, const float radius, const CColor& color) { #if CONFIG2_GLES + UNUSED2(origin); UNUSED2(radius); UNUSED2(color); #warning TODO: implement drawing circle for GLES #else CShaderTechniquePtr debugCircleTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_line); debugCircleTech->BeginPass(); const CCamera& camera = g_Renderer.GetSceneRenderer().GetViewCamera(); CShaderProgramPtr debugCircleShader = debugCircleTech->GetShader(); debugCircleShader->Uniform(str_transform, camera.GetViewProjection()); debugCircleShader->Uniform(str_color, color); const CVector3D cameraUp = camera.GetOrientation().GetUp(); const CVector3D cameraLeft = camera.GetOrientation().GetLeft(); std::vector vertices; #define ADD(position) \ vertices.emplace_back((position).X); \ vertices.emplace_back((position).Y); \ vertices.emplace_back((position).Z); ADD(origin) constexpr size_t segments = 16; for (size_t idx = 0; idx <= segments; ++idx) { const float angle = M_PI * 2.0f * idx / segments; const CVector3D offset = cameraUp * sin(angle) - cameraLeft * cos(angle); ADD(origin + offset * radius) } #undef ADD debugCircleShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); debugCircleShader->AssertPointersBound(); glDrawArrays(GL_TRIANGLE_FAN, 0, vertices.size() / 3); debugCircleTech->EndPass(); #endif } void CDebugRenderer::DrawCameraFrustum(const CCamera& camera, const CColor& color, int intermediates) { #if CONFIG2_GLES -#warning TODO: implement camera frustum for GLES + UNUSED2(camera); UNUSED2(color); UNUSED2(intermediates); + #warning TODO: implement camera frustum for GLES #else CCamera::Quad nearPoints; CCamera::Quad farPoints; camera.GetViewQuad(camera.GetNearPlane(), nearPoints); camera.GetViewQuad(camera.GetFarPlane(), farPoints); for(int i = 0; i < 4; i++) { nearPoints[i] = camera.m_Orientation.Transform(nearPoints[i]); farPoints[i] = camera.m_Orientation.Transform(farPoints[i]); } CShaderTechniquePtr overlayTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_line); overlayTech->BeginPass(); CShaderProgramPtr overlayShader = overlayTech->GetShader(); overlayShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); overlayShader->Uniform(str_color, color); std::vector vertices; #define ADD(position) \ vertices.emplace_back((position).X); \ vertices.emplace_back((position).Y); \ vertices.emplace_back((position).Z); // Near plane. ADD(nearPoints[0]); ADD(nearPoints[1]); ADD(nearPoints[2]); ADD(nearPoints[3]); // Far plane. ADD(farPoints[0]); ADD(farPoints[1]); ADD(farPoints[2]); ADD(farPoints[3]); // Intermediate planes. CVector3D intermediatePoints[4]; for(int i = 0; i < intermediates; ++i) { const float t = (i + 1.0f) / (intermediates + 1.0f); for(int j = 0; j < 4; ++j) intermediatePoints[j] = nearPoints[j] * t + farPoints[j] * (1.0f - t); ADD(intermediatePoints[0]); ADD(intermediatePoints[1]); ADD(intermediatePoints[2]); ADD(intermediatePoints[3]); } overlayShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); overlayShader->AssertPointersBound(); glDrawArrays(GL_QUADS, 0, vertices.size() / 3); vertices.clear(); // Connection lines. ADD(nearPoints[0]); ADD(farPoints[0]); ADD(nearPoints[1]); ADD(farPoints[1]); ADD(nearPoints[2]); ADD(farPoints[2]); ADD(nearPoints[3]); ADD(farPoints[3]); ADD(nearPoints[0]); ADD(farPoints[0]); overlayShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); overlayShader->AssertPointersBound(); glDrawArrays(GL_QUAD_STRIP, 0, vertices.size() / 3); #undef ADD overlayTech->EndPass(); #endif } void CDebugRenderer::DrawBoundingBox(const CBoundingBoxAligned& boundingBox, const CColor& color) { DrawBoundingBox(boundingBox, color, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); } void CDebugRenderer::DrawBoundingBox(const CBoundingBoxAligned& boundingBox, const CColor& color, const CMatrix3D& transform) { CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_solid); shaderTech->BeginPass(); CShaderProgramPtr shader = shaderTech->GetShader(); shader->Uniform(str_color, color); shader->Uniform(str_transform, transform); std::vector data; #define ADD_FACE(x, y, z) \ ADD_PT(0, 0, x, y, z); ADD_PT(1, 0, x, y, z); ADD_PT(1, 1, x, y, z); \ ADD_PT(1, 1, x, y, z); ADD_PT(0, 1, x, y, z); ADD_PT(0, 0, x, y, z); #define ADD_PT(u_, v_, x, y, z) \ STMT(int u = u_; int v = v_; \ data.push_back(u); \ data.push_back(v); \ data.push_back(boundingBox[x].X); \ data.push_back(boundingBox[y].Y); \ data.push_back(boundingBox[z].Z); \ ) ADD_FACE(u, v, 0); ADD_FACE(0, u, v); ADD_FACE(u, 0, 1-v); ADD_FACE(u, 1-v, 1); ADD_FACE(1, u, 1-v); ADD_FACE(u, 1, v); #undef ADD_FACE shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 5*sizeof(float), &data[0]); shader->VertexPointer(3, GL_FLOAT, 5*sizeof(float), &data[2]); shader->AssertPointersBound(); glDrawArrays(GL_TRIANGLES, 0, 6*6); shaderTech->EndPass(); } void CDebugRenderer::DrawBoundingBoxOutline(const CBoundingBoxAligned& boundingBox, const CColor& color) { DrawBoundingBoxOutline(boundingBox, color, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); } void CDebugRenderer::DrawBoundingBoxOutline(const CBoundingBoxAligned& boundingBox, const CColor& color, const CMatrix3D& transform) { CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_solid); shaderTech->BeginPass(); CShaderProgramPtr shader = shaderTech->GetShader(); shader->Uniform(str_color, color); shader->Uniform(str_transform, transform); std::vector data; #define ADD_FACE(x, y, z) \ ADD_PT(0, 0, x, y, z); ADD_PT(1, 0, x, y, z); \ ADD_PT(1, 0, x, y, z); ADD_PT(1, 1, x, y, z); \ ADD_PT(1, 1, x, y, z); ADD_PT(0, 1, x, y, z); \ ADD_PT(0, 1, x, y, z); ADD_PT(0, 0, x, y, z); #define ADD_PT(u_, v_, x, y, z) \ STMT(int u = u_; int v = v_; \ data.push_back(u); \ data.push_back(v); \ data.push_back(boundingBox[x].X); \ data.push_back(boundingBox[y].Y); \ data.push_back(boundingBox[z].Z); \ ) ADD_FACE(u, v, 0); ADD_FACE(0, u, v); ADD_FACE(u, 0, 1-v); ADD_FACE(u, 1-v, 1); ADD_FACE(1, u, 1-v); ADD_FACE(u, 1, v); #undef ADD_FACE shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 5*sizeof(float), &data[0]); shader->VertexPointer(3, GL_FLOAT, 5*sizeof(float), &data[2]); shader->AssertPointersBound(); glDrawArrays(GL_LINES, 0, 6*8); shaderTech->EndPass(); } void CDebugRenderer::DrawBrush(const CBrush& brush, const CColor& color) { CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_solid); shaderTech->BeginPass(); CShaderProgramPtr shader = shaderTech->GetShader(); shader->Uniform(str_color, color); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); std::vector data; std::vector> faces; brush.GetFaces(faces); #define ADD_VERT(a) \ STMT( \ data.push_back(u); \ data.push_back(v); \ data.push_back(brush.GetVertices()[faces[i][a]].X); \ data.push_back(brush.GetVertices()[faces[i][a]].Y); \ data.push_back(brush.GetVertices()[faces[i][a]].Z); \ ) for (size_t i = 0; i < faces.size(); ++i) { // Triangulate into (0,1,2), (0,2,3), ... for (size_t j = 1; j < faces[i].size() - 2; ++j) { float u = 0; float v = 0; ADD_VERT(0); ADD_VERT(j); ADD_VERT(j+1); } } #undef ADD_VERT shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 5*sizeof(float), &data[0]); shader->VertexPointer(3, GL_FLOAT, 5*sizeof(float), &data[2]); shader->AssertPointersBound(); glDrawArrays(GL_TRIANGLES, 0, data.size() / 5); shaderTech->EndPass(); } void CDebugRenderer::DrawBrushOutline(const CBrush& brush, const CColor& color) { CShaderTechniquePtr shaderTech = g_Renderer.GetShaderManager().LoadEffect(str_solid); shaderTech->BeginPass(); CShaderProgramPtr shader = shaderTech->GetShader(); shader->Uniform(str_color, color); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); std::vector data; std::vector> faces; brush.GetFaces(faces); #define ADD_VERT(a) \ STMT( \ data.push_back(u); \ data.push_back(v); \ data.push_back(brush.GetVertices()[faces[i][a]].X); \ data.push_back(brush.GetVertices()[faces[i][a]].Y); \ data.push_back(brush.GetVertices()[faces[i][a]].Z); \ ) for (size_t i = 0; i < faces.size(); ++i) { for (size_t j = 0; j < faces[i].size() - 1; ++j) { float u = 0; float v = 0; ADD_VERT(j); ADD_VERT(j+1); } } #undef ADD_VERT shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, 5*sizeof(float), &data[0]); shader->VertexPointer(3, GL_FLOAT, 5*sizeof(float), &data[2]); shader->AssertPointersBound(); glDrawArrays(GL_LINES, 0, data.size() / 5); shaderTech->EndPass(); } Index: ps/trunk/source/renderer/OverlayRenderer.cpp =================================================================== --- ps/trunk/source/renderer/OverlayRenderer.cpp (revision 26166) +++ ps/trunk/source/renderer/OverlayRenderer.cpp (revision 26167) @@ -1,766 +1,767 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "OverlayRenderer.h" #include "graphics/Camera.h" #include "graphics/LOSTexture.h" #include "graphics/Overlay.h" #include "graphics/ShaderManager.h" #include "graphics/Terrain.h" #include "graphics/TextureManager.h" #include "lib/hash.h" #include "lib/ogl.h" #include "maths/MathUtil.h" #include "maths/Quaternion.h" #include "ps/CStrInternStatic.h" #include "ps/Game.h" #include "ps/Profile.h" #include "renderer/DebugRenderer.h" #include "renderer/Renderer.h" #include "renderer/SceneRenderer.h" #include "renderer/TexturedLineRData.h" #include "renderer/VertexArray.h" #include "renderer/VertexBuffer.h" #include "renderer/VertexBufferManager.h" #include "simulation2/components/ICmpWaterManager.h" #include "simulation2/Simulation2.h" #include "simulation2/system/SimContext.h" #include namespace { CShaderTechniquePtr GetOverlayLineShaderTechnique(const CShaderDefines& defines) { return g_Renderer.GetShaderManager().LoadEffect(str_overlay_line, defines); } } // anonymous namespace /** * Key used to group quads into batches for more efficient rendering. Currently groups by the combination * of the main texture and the texture mask, to minimize texture swapping during rendering. */ struct QuadBatchKey { QuadBatchKey (const CTexturePtr& texture, const CTexturePtr& textureMask) : m_Texture(texture), m_TextureMask(textureMask) { } bool operator==(const QuadBatchKey& other) const { return (m_Texture == other.m_Texture && m_TextureMask == other.m_TextureMask); } CTexturePtr m_Texture; CTexturePtr m_TextureMask; }; struct QuadBatchHash { std::size_t operator()(const QuadBatchKey& d) const { size_t seed = 0; hash_combine(seed, d.m_Texture); hash_combine(seed, d.m_TextureMask); return seed; } }; /** * Holds information about a single quad rendering batch. */ class QuadBatchData : public CRenderData { public: QuadBatchData() : m_IndicesBase(0), m_NumRenderQuads(0) { } /// Holds the quad overlay structures requested to be rendered in this batch. Must be cleared /// after each frame. std::vector m_Quads; /// Start index of this batch into the dedicated quad indices VertexArray (see OverlayInternals). size_t m_IndicesBase; /// Amount of quads to actually render in this batch. Potentially (although unlikely to be) /// different from m_Quads.size() due to restrictions on the total amount of quads that can be /// rendered. Must be reset after each frame. size_t m_NumRenderQuads; }; struct OverlayRendererInternals { using QuadBatchMap = std::unordered_map; OverlayRendererInternals(); ~OverlayRendererInternals(){ } std::vector lines; std::vector texlines; std::vector sprites; std::vector quads; std::vector spheres; QuadBatchMap quadBatchMap; // Dedicated vertex/index buffers for rendering all quads (to within the limits set by // MAX_QUAD_OVERLAYS). VertexArray quadVertices; VertexArray::Attribute quadAttributePos; VertexArray::Attribute quadAttributeColor; VertexArray::Attribute quadAttributeUV; VertexIndexArray quadIndices; /// Maximum amount of quad overlays we support for rendering. This limit is set to be able to /// render all quads from a single dedicated VB without having to reallocate it, which is much /// faster in the typical case of rendering only a handful of quads. When modifying this value, /// you must take care for the new amount of quads to fit in a single VBO (which is not likely /// to be a problem). static const size_t MAX_QUAD_OVERLAYS = 1024; // Sets of commonly-(re)used shader defines. CShaderDefines defsOverlayLineNormal; CShaderDefines defsOverlayLineAlwaysVisible; CShaderDefines defsQuadOverlay; // Geometry for a unit sphere std::vector sphereVertexes; std::vector sphereIndexes; void GenerateSphere(); /// Performs one-time setup. Called from CRenderer::Open, after graphics capabilities have /// been detected. Note that no VBOs must be created before this is called, since the shader /// path and graphics capabilities are not guaranteed to be stable before this point. void Initialize(); }; const float OverlayRenderer::OVERLAY_VOFFSET = 0.2f; OverlayRendererInternals::OverlayRendererInternals() : quadVertices(GL_DYNAMIC_DRAW), quadIndices(GL_STATIC_DRAW) { quadAttributePos.elems = 3; quadAttributePos.type = GL_FLOAT; quadVertices.AddAttribute(&quadAttributePos); quadAttributeColor.elems = 4; quadAttributeColor.type = GL_FLOAT; quadVertices.AddAttribute(&quadAttributeColor); quadAttributeUV.elems = 2; quadAttributeUV.type = GL_SHORT; // don't use GL_UNSIGNED_SHORT here, TexCoordPointer won't accept it quadVertices.AddAttribute(&quadAttributeUV); // Note that we're reusing the textured overlay line shader for the quad overlay rendering. This // is because their code is almost identical; the only difference is that for the quad overlays // we want to use a vertex color stream as opposed to an objectColor uniform. To this end, the // shader has been set up to switch between the two behaviours based on the USE_OBJECTCOLOR define. defsOverlayLineNormal.Add(str_USE_OBJECTCOLOR, str_1); defsOverlayLineAlwaysVisible.Add(str_USE_OBJECTCOLOR, str_1); defsOverlayLineAlwaysVisible.Add(str_IGNORE_LOS, str_1); } void OverlayRendererInternals::Initialize() { // Perform any initialization after graphics capabilities have been detected. Notably, // only at this point can we safely allocate VBOs (in contrast to e.g. in the constructor), // because their creation depends on the shader path, which is not reliably set before this point. quadVertices.SetNumVertices(MAX_QUAD_OVERLAYS * 4); quadVertices.Layout(); // allocate backing store quadIndices.SetNumVertices(MAX_QUAD_OVERLAYS * 6); quadIndices.Layout(); // allocate backing store // Since the quads in the vertex array are independent and always consist of exactly 4 vertices per quad, the // indices are always the same; we can therefore fill in all the indices once and pretty much forget about // them. We then also no longer need its backing store, since we never change any indices afterwards. VertexArrayIterator index = quadIndices.GetIterator(); for (u16 i = 0; i < static_cast(MAX_QUAD_OVERLAYS); ++i) { *index++ = i * 4 + 0; *index++ = i * 4 + 1; *index++ = i * 4 + 2; *index++ = i * 4 + 2; *index++ = i * 4 + 3; *index++ = i * 4 + 0; } quadIndices.Upload(); quadIndices.FreeBackingStore(); } OverlayRenderer::OverlayRenderer() { m = new OverlayRendererInternals(); } OverlayRenderer::~OverlayRenderer() { delete m; } void OverlayRenderer::Initialize() { m->Initialize(); } void OverlayRenderer::Submit(SOverlayLine* line) { m->lines.push_back(line); } void OverlayRenderer::Submit(SOverlayTexturedLine* line) { // Simplify the rest of the code by guaranteeing non-empty lines if (line->m_Coords.empty()) return; m->texlines.push_back(line); } void OverlayRenderer::Submit(SOverlaySprite* overlay) { m->sprites.push_back(overlay); } void OverlayRenderer::Submit(SOverlayQuad* overlay) { m->quads.push_back(overlay); } void OverlayRenderer::Submit(SOverlaySphere* overlay) { m->spheres.push_back(overlay); } void OverlayRenderer::EndFrame() { m->lines.clear(); m->texlines.clear(); m->sprites.clear(); m->quads.clear(); m->spheres.clear(); // this should leave the capacity unchanged, which is okay since it // won't be very large or very variable // Empty the batch rendering data structures, but keep their key mappings around for the next frames for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& quadBatchData = (it->second); quadBatchData.m_Quads.clear(); quadBatchData.m_NumRenderQuads = 0; quadBatchData.m_IndicesBase = 0; } } void OverlayRenderer::PrepareForRendering() { PROFILE3("prepare overlays"); // This is where we should do something like sort the overlays by // color/sprite/etc for more efficient rendering for (size_t i = 0; i < m->texlines.size(); ++i) { SOverlayTexturedLine* line = m->texlines[i]; if (!line->m_RenderData) { line->m_RenderData = std::make_shared(); line->m_RenderData->Update(*line); // We assume the overlay line will get replaced by the caller // if terrain changes, so we don't need to detect that here and // call Update again. Also we assume the caller won't change // any of the parameters after first submitting the line. } } // Group quad overlays by their texture/mask combination for efficient rendering // TODO: consider doing this directly in Submit() for (size_t i = 0; i < m->quads.size(); ++i) { SOverlayQuad* const quad = m->quads[i]; QuadBatchKey textures(quad->m_Texture, quad->m_TextureMask); QuadBatchData& batchRenderData = m->quadBatchMap[textures]; // will create entry if it doesn't already exist // add overlay to list of quads batchRenderData.m_Quads.push_back(quad); } const CVector3D vOffset(0, OverlayRenderer::OVERLAY_VOFFSET, 0); // Write quad overlay vertices/indices to VA backing store VertexArrayIterator vertexPos = m->quadAttributePos.GetIterator(); VertexArrayIterator vertexColor = m->quadAttributeColor.GetIterator(); VertexArrayIterator vertexUV = m->quadAttributeUV.GetIterator(); size_t indicesIdx = 0; size_t totalNumQuads = 0; for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& batchRenderData = (it->second); batchRenderData.m_NumRenderQuads = 0; if (batchRenderData.m_Quads.empty()) continue; // Remember the current index into the (entire) indices array as our base offset for this batch batchRenderData.m_IndicesBase = indicesIdx; // points to the index where each iteration's vertices will be appended for (size_t i = 0; i < batchRenderData.m_Quads.size() && totalNumQuads < OverlayRendererInternals::MAX_QUAD_OVERLAYS; i++) { const SOverlayQuad* quad = batchRenderData.m_Quads[i]; // TODO: this is kind of ugly, the iterator should use a type that can have quad->m_Color assigned // to it directly const CVector4D quadColor(quad->m_Color.r, quad->m_Color.g, quad->m_Color.b, quad->m_Color.a); *vertexPos++ = quad->m_Corners[0] + vOffset; *vertexPos++ = quad->m_Corners[1] + vOffset; *vertexPos++ = quad->m_Corners[2] + vOffset; *vertexPos++ = quad->m_Corners[3] + vOffset; (*vertexUV)[0] = 0; (*vertexUV)[1] = 0; ++vertexUV; (*vertexUV)[0] = 0; (*vertexUV)[1] = 1; ++vertexUV; (*vertexUV)[0] = 1; (*vertexUV)[1] = 1; ++vertexUV; (*vertexUV)[0] = 1; (*vertexUV)[1] = 0; ++vertexUV; *vertexColor++ = quadColor; *vertexColor++ = quadColor; *vertexColor++ = quadColor; *vertexColor++ = quadColor; indicesIdx += 6; totalNumQuads++; batchRenderData.m_NumRenderQuads++; } } m->quadVertices.Upload(); // don't free the backing store! we'll overwrite it on the next frame to save a reallocation. m->quadVertices.PrepareForRendering(); } void OverlayRenderer::RenderOverlaysBeforeWater() { PROFILE3_GPU("overlays (before)"); #if CONFIG2_GLES #warning TODO: implement OverlayRenderer::RenderOverlaysBeforeWater for GLES #else glEnable(GL_BLEND); // Ignore z so that we draw behind terrain (but don't disable GL_DEPTH_TEST // since we still want to write to the z buffer) glDepthFunc(GL_ALWAYS); for (SOverlayLine* line : m->lines) { if (line->m_Coords.empty()) continue; g_Renderer.GetDebugRenderer().DrawLine(line->m_Coords, line->m_Color, static_cast(line->m_Thickness)); } glDepthFunc(GL_LEQUAL); glDisable(GL_BLEND); #endif } void OverlayRenderer::RenderOverlaysAfterWater() { PROFILE3_GPU("overlays (after)"); RenderTexturedOverlayLines(); RenderQuadOverlays(); RenderSphereOverlays(); } void OverlayRenderer::RenderTexturedOverlayLines() { #if CONFIG2_GLES #warning TODO: implement OverlayRenderer::RenderTexturedOverlayLines for GLES return; #endif if (m->texlines.empty()) return; ogl_WarnIfError(); glActiveTextureARB(GL_TEXTURE0); glEnable(GL_BLEND); glDepthMask(0); CLOSTexture& los = g_Renderer.GetSceneRenderer().GetScene().GetLOSTexture(); // ---------------------------------------------------------------------------------------- CShaderTechniquePtr shaderTechTexLineNormal = GetOverlayLineShaderTechnique(m->defsOverlayLineNormal); if (shaderTechTexLineNormal) { shaderTechTexLineNormal->BeginPass(); CShaderProgramPtr shaderTexLineNormal = shaderTechTexLineNormal->GetShader(); shaderTexLineNormal->Bind(); shaderTexLineNormal->BindTexture(str_losTex, los.GetTexture()); shaderTexLineNormal->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f); shaderTexLineNormal->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); // batch render only the non-always-visible overlay lines using the normal shader RenderTexturedOverlayLines(shaderTexLineNormal, false); shaderTechTexLineNormal->EndPass(); } // ---------------------------------------------------------------------------------------- CShaderTechniquePtr shaderTechTexLineAlwaysVisible = GetOverlayLineShaderTechnique(m->defsOverlayLineAlwaysVisible); if (shaderTechTexLineAlwaysVisible) { shaderTechTexLineAlwaysVisible->BeginPass(); CShaderProgramPtr shaderTexLineAlwaysVisible = shaderTechTexLineAlwaysVisible->GetShader(); shaderTexLineAlwaysVisible->Bind(); // TODO: losTex and losTransform are unused in the always visible shader; see if these can be safely omitted shaderTexLineAlwaysVisible->BindTexture(str_losTex, los.GetTexture()); shaderTexLineAlwaysVisible->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f); shaderTexLineAlwaysVisible->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); // batch render only the always-visible overlay lines using the LoS-ignored shader RenderTexturedOverlayLines(shaderTexLineAlwaysVisible, true); shaderTechTexLineAlwaysVisible->EndPass(); } // ---------------------------------------------------------------------------------------- // TODO: the shaders should probably be responsible for unbinding their textures g_Renderer.BindTexture(1, 0); g_Renderer.BindTexture(0, 0); CVertexBuffer::Unbind(); glDepthMask(1); glDisable(GL_BLEND); } void OverlayRenderer::RenderTexturedOverlayLines(CShaderProgramPtr shader, bool alwaysVisible) { #if !CONFIG2_GLES if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif for (size_t i = 0; i < m->texlines.size(); ++i) { SOverlayTexturedLine* line = m->texlines[i]; // render only those lines matching the requested alwaysVisible status if (!line->m_RenderData || line->m_AlwaysVisible != alwaysVisible) continue; ENSURE(line->m_RenderData); line->m_RenderData->Render(*line, shader); } #if !CONFIG2_GLES if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } void OverlayRenderer::RenderQuadOverlays() { #if CONFIG2_GLES #warning TODO: implement OverlayRenderer::RenderQuadOverlays for GLES return; #endif if (m->quadBatchMap.empty()) return; CShaderTechniquePtr shaderTech = GetOverlayLineShaderTechnique(m->defsQuadOverlay); if (!shaderTech) return; shaderTech->BeginPass(); CShaderProgramPtr shader = shaderTech->GetShader(); #if !CONFIG2_GLES if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif glActiveTextureARB(GL_TEXTURE0); glEnable(GL_BLEND); glDepthMask(0); CLOSTexture& los = g_Renderer.GetSceneRenderer().GetScene().GetLOSTexture(); shader->Bind(); shader->BindTexture(str_losTex, los.GetTexture()); shader->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); // Base offsets (in bytes) of the two backing stores relative to their owner VBO u8* indexBase = m->quadIndices.Bind(); u8* vertexBase = m->quadVertices.Bind(); GLsizei indexStride = m->quadIndices.GetStride(); GLsizei vertexStride = m->quadVertices.GetStride(); for (OverlayRendererInternals::QuadBatchMap::iterator it = m->quadBatchMap.begin(); it != m->quadBatchMap.end(); ++it) { QuadBatchData& batchRenderData = it->second; const size_t batchNumQuads = batchRenderData.m_NumRenderQuads; // Careful; some drivers don't like drawing calls with 0 stuff to draw. if (batchNumQuads == 0) continue; const QuadBatchKey& maskPair = it->first; shader->BindTexture(str_baseTex, maskPair.m_Texture); shader->BindTexture(str_maskTex, maskPair.m_TextureMask); int streamflags = shader->GetStreamFlags(); if (streamflags & STREAM_POS) shader->VertexPointer(m->quadAttributePos.elems, m->quadAttributePos.type, vertexStride, vertexBase + m->quadAttributePos.offset); if (streamflags & STREAM_UV0) shader->TexCoordPointer(GL_TEXTURE0, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset); if (streamflags & STREAM_UV1) shader->TexCoordPointer(GL_TEXTURE1, m->quadAttributeUV.elems, m->quadAttributeUV.type, vertexStride, vertexBase + m->quadAttributeUV.offset); if (streamflags & STREAM_COLOR) shader->ColorPointer(m->quadAttributeColor.elems, m->quadAttributeColor.type, vertexStride, vertexBase + m->quadAttributeColor.offset); shader->AssertPointersBound(); glDrawElements(GL_TRIANGLES, (GLsizei)(batchNumQuads * 6), GL_UNSIGNED_SHORT, indexBase + indexStride * batchRenderData.m_IndicesBase); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris += batchNumQuads*2; } shaderTech->EndPass(); // TODO: the shader should probably be responsible for unbinding its textures g_Renderer.BindTexture(1, 0); g_Renderer.BindTexture(0, 0); CVertexBuffer::Unbind(); glDepthMask(1); glDisable(GL_BLEND); #if !CONFIG2_GLES if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } void OverlayRenderer::RenderForegroundOverlays(const CCamera& viewCamera) { PROFILE3_GPU("overlays (fg)"); #if CONFIG2_GLES -#warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES + UNUSED2(viewCamera); + #warning TODO: implement OverlayRenderer::RenderForegroundOverlays for GLES #else if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glActiveTextureARB(GL_TEXTURE0); glEnable(GL_BLEND); glDisable(GL_DEPTH_TEST); CVector3D right = -viewCamera.GetOrientation().GetLeft(); CVector3D up = viewCamera.GetOrientation().GetUp(); CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_foreground_overlay); tech->BeginPass(); CShaderProgramPtr shader = tech->GetShader(); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); float uvs[8] = { 0,1, 1,1, 1,0, 0,0 }; shader->TexCoordPointer(GL_TEXTURE0, 2, GL_FLOAT, sizeof(float)*2, &uvs[0]); for (size_t i = 0; i < m->sprites.size(); ++i) { SOverlaySprite* sprite = m->sprites[i]; if (!i || sprite->m_Texture != m->sprites[i - 1]->m_Texture) shader->BindTexture(str_baseTex, sprite->m_Texture); shader->Uniform(str_colorMul, sprite->m_Color); CVector3D pos[4] = { sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y0, sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y0, sprite->m_Position + right*sprite->m_X1 + up*sprite->m_Y1, sprite->m_Position + right*sprite->m_X0 + up*sprite->m_Y1 }; shader->VertexPointer(3, GL_FLOAT, sizeof(float)*3, &pos[0].X); glDrawArrays(GL_QUADS, 0, (GLsizei)4); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris += 2; } tech->EndPass(); glEnable(GL_DEPTH_TEST); glDisable(GL_BLEND); if (g_Renderer.GetSceneRenderer().GetOverlayRenderMode() == WIREFRAME) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } static void TessellateSphereFace(const CVector3D& a, u16 ai, const CVector3D& b, u16 bi, const CVector3D& c, u16 ci, std::vector& vertexes, std::vector& indexes, int level) { if (level == 0) { indexes.push_back(ai); indexes.push_back(bi); indexes.push_back(ci); } else { CVector3D d = (a + b).Normalized(); CVector3D e = (b + c).Normalized(); CVector3D f = (c + a).Normalized(); int di = vertexes.size() / 3; vertexes.push_back(d.X); vertexes.push_back(d.Y); vertexes.push_back(d.Z); int ei = vertexes.size() / 3; vertexes.push_back(e.X); vertexes.push_back(e.Y); vertexes.push_back(e.Z); int fi = vertexes.size() / 3; vertexes.push_back(f.X); vertexes.push_back(f.Y); vertexes.push_back(f.Z); TessellateSphereFace(a,ai, d,di, f,fi, vertexes, indexes, level-1); TessellateSphereFace(d,di, b,bi, e,ei, vertexes, indexes, level-1); TessellateSphereFace(f,fi, e,ei, c,ci, vertexes, indexes, level-1); TessellateSphereFace(d,di, e,ei, f,fi, vertexes, indexes, level-1); } } static void TessellateSphere(std::vector& vertexes, std::vector& indexes, int level) { /* Start with a tetrahedron, then tessellate */ float s = sqrtf(0.5f); #define VERT(a,b,c) vertexes.push_back(a); vertexes.push_back(b); vertexes.push_back(c); VERT(-s, 0, -s); VERT( s, 0, -s); VERT( s, 0, s); VERT(-s, 0, s); VERT( 0, -1, 0); VERT( 0, 1, 0); #define FACE(a,b,c) \ TessellateSphereFace( \ CVector3D(vertexes[a*3], vertexes[a*3+1], vertexes[a*3+2]), a, \ CVector3D(vertexes[b*3], vertexes[b*3+1], vertexes[b*3+2]), b, \ CVector3D(vertexes[c*3], vertexes[c*3+1], vertexes[c*3+2]), c, \ vertexes, indexes, level); FACE(0,4,1); FACE(1,4,2); FACE(2,4,3); FACE(3,4,0); FACE(1,5,0); FACE(2,5,1); FACE(3,5,2); FACE(0,5,3); #undef FACE #undef VERT } void OverlayRendererInternals::GenerateSphere() { if (sphereVertexes.empty()) TessellateSphere(sphereVertexes, sphereIndexes, 3); } void OverlayRenderer::RenderSphereOverlays() { PROFILE3_GPU("overlays (spheres)"); #if CONFIG2_GLES #warning TODO: implement OverlayRenderer::RenderSphereOverlays for GLES #else if (m->spheres.empty()) return; glEnable(GL_BLEND); glDepthMask(0); CShaderProgramPtr shader; CShaderTechniquePtr tech; tech = g_Renderer.GetShaderManager().LoadEffect(str_overlay_solid); tech->BeginPass(); shader = tech->GetShader(); m->GenerateSphere(); shader->VertexPointer(3, GL_FLOAT, 0, &m->sphereVertexes[0]); for (size_t i = 0; i < m->spheres.size(); ++i) { SOverlaySphere* sphere = m->spheres[i]; CMatrix3D transform; transform.SetIdentity(); transform.Scale(sphere->m_Radius, sphere->m_Radius, sphere->m_Radius); transform.Translate(sphere->m_Center); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); shader->Uniform(str_instancingTransform, transform); shader->Uniform(str_color, sphere->m_Color); glDrawElements(GL_TRIANGLES, m->sphereIndexes.size(), GL_UNSIGNED_SHORT, &m->sphereIndexes[0]); g_Renderer.GetStats().m_DrawCalls++; g_Renderer.GetStats().m_OverlayTris = m->sphereIndexes.size()/3; } tech->EndPass(); glDepthMask(1); glDisable(GL_BLEND); #endif } Index: ps/trunk/source/renderer/TerrainOverlay.cpp =================================================================== --- ps/trunk/source/renderer/TerrainOverlay.cpp (revision 26166) +++ ps/trunk/source/renderer/TerrainOverlay.cpp (revision 26167) @@ -1,392 +1,394 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "TerrainOverlay.h" #include "graphics/Color.h" #include "graphics/ShaderManager.h" #include "graphics/ShaderProgram.h" #include "graphics/Terrain.h" #include "lib/bits.h" #include "lib/ogl.h" #include "maths/MathUtil.h" #include "ps/CStrInternStatic.h" #include "ps/Game.h" #include "ps/Profile.h" #include "ps/World.h" #include "renderer/Renderer.h" #include "renderer/SceneRenderer.h" #include "renderer/TerrainRenderer.h" #include "simulation2/system/SimContext.h" #include // Global overlay list management: static std::vector > g_TerrainOverlayList; ITerrainOverlay::ITerrainOverlay(int priority) { // Add to global list of overlays g_TerrainOverlayList.emplace_back(this, priority); // Sort by overlays by priority. Do stable sort so that adding/removing // overlays doesn't randomly disturb all the existing ones (which would // be noticeable if they have the same priority and overlap). std::stable_sort(g_TerrainOverlayList.begin(), g_TerrainOverlayList.end(), [](const std::pair& a, const std::pair& b) { return a.second < b.second; }); } ITerrainOverlay::~ITerrainOverlay() { std::vector >::iterator newEnd = std::remove_if(g_TerrainOverlayList.begin(), g_TerrainOverlayList.end(), [this](const std::pair& a) { return a.first == this; }); g_TerrainOverlayList.erase(newEnd, g_TerrainOverlayList.end()); } void ITerrainOverlay::RenderOverlaysBeforeWater() { if (g_TerrainOverlayList.empty()) return; PROFILE3_GPU("terrain overlays (before)"); for (size_t i = 0; i < g_TerrainOverlayList.size(); ++i) g_TerrainOverlayList[i].first->RenderBeforeWater(); } void ITerrainOverlay::RenderOverlaysAfterWater(int cullGroup) { if (g_TerrainOverlayList.empty()) return; PROFILE3_GPU("terrain overlays (after)"); for (size_t i = 0; i < g_TerrainOverlayList.size(); ++i) g_TerrainOverlayList[i].first->RenderAfterWater(cullGroup); } ////////////////////////////////////////////////////////////////////////// TerrainOverlay::TerrainOverlay(const CSimContext& simContext, int priority /* = 100 */) : ITerrainOverlay(priority), m_Terrain(&simContext.GetTerrain()) { } void TerrainOverlay::StartRender() { } void TerrainOverlay::EndRender() { } void TerrainOverlay::GetTileExtents( ssize_t& min_i_inclusive, ssize_t& min_j_inclusive, ssize_t& max_i_inclusive, ssize_t& max_j_inclusive) { // Default to whole map min_i_inclusive = min_j_inclusive = 0; max_i_inclusive = max_j_inclusive = m_Terrain->GetTilesPerSide()-1; } void TerrainOverlay::RenderBeforeWater() { if (!m_Terrain) return; // should never happen, but let's play it safe #if CONFIG2_GLES #warning TODO: implement TerrainOverlay::RenderOverlays for GLES #else glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask(GL_FALSE); // To ensure that outlines are drawn on top of the terrain correctly (and // don't Z-fight and flicker nastily), draw them as QUADS with the LINE // PolygonMode, and use PolygonOffset to pull them towards the camera. // (See e.g. http://www.opengl.org/resources/faq/technical/polygonoffset.htm) glPolygonOffset(-1.f, -1.f); //glEnable(GL_POLYGON_OFFSET_LINE); glEnable(GL_POLYGON_OFFSET_FILL); glActiveTextureARB(GL_TEXTURE0); StartRender(); ssize_t min_i, min_j, max_i, max_j; GetTileExtents(min_i, min_j, max_i, max_j); // Clamp the min to 0, but the max to -1 - so tile -1 can never be rendered, // but if unclamped_max<0 then no tiles at all will be rendered. And the same // for the upper limit. min_i = Clamp(min_i, 0, m_Terrain->GetTilesPerSide()); min_j = Clamp(min_j, 0, m_Terrain->GetTilesPerSide()); max_i = Clamp(max_i, -1, m_Terrain->GetTilesPerSide()-1); max_j = Clamp(max_j, -1, m_Terrain->GetTilesPerSide()-1); for (m_j = min_j; m_j <= max_j; ++m_j) for (m_i = min_i; m_i <= max_i; ++m_i) ProcessTile(m_i, m_j); EndRender(); // Clean up state changes glEnable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); //glDisable(GL_POLYGON_OFFSET_LINE); glDisable(GL_POLYGON_OFFSET_FILL); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glDepthMask(GL_TRUE); glDisable(GL_BLEND); #endif } void TerrainOverlay::RenderTile(const CColor& color, bool draw_hidden) { RenderTile(color, draw_hidden, m_i, m_j); } void TerrainOverlay::RenderTile(const CColor& color, bool draw_hidden, ssize_t i, ssize_t j) { // TODO: unnecessary computation calls has been removed but we should use // a vertex buffer or a vertex shader with a texture. // Not sure if it's possible on old OpenGL. if (draw_hidden) { glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); } else { glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); } #if CONFIG2_GLES -#warning TODO: implement TerrainOverlay::RenderTile for GLES + UNUSED2(color); UNUSED2(i); UNUSED2(j); + #warning TODO: implement TerrainOverlay::RenderTile for GLES #else CVector3D pos[2][2]; for (int di = 0; di < 2; ++di) for (int dj = 0; dj < 2; ++dj) m_Terrain->CalcPosition(i + di, j + dj, pos[di][dj]); std::vector vertices; #define ADD(position) \ vertices.emplace_back((position).X); \ vertices.emplace_back((position).Y); \ vertices.emplace_back((position).Z); if (m_Terrain->GetTriangulationDir(i, j)) { ADD(pos[0][0]); ADD(pos[1][0]); ADD(pos[0][1]); ADD(pos[1][0]); ADD(pos[1][1]); ADD(pos[0][1]); } else { ADD(pos[0][0]); ADD(pos[1][0]); ADD(pos[1][1]); ADD(pos[1][1]); ADD(pos[0][1]); ADD(pos[0][0]); } #undef ADD CShaderTechniquePtr overlayTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_line); overlayTech->BeginPass(); CShaderProgramPtr overlayShader = overlayTech->GetShader(); overlayShader->Bind(); overlayShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); overlayShader->Uniform(str_color, color); overlayShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); overlayShader->AssertPointersBound(); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glDrawArrays(GL_TRIANGLES, 0, vertices.size() / 3); overlayShader->Unbind(); overlayTech->EndPass(); #endif } void TerrainOverlay::RenderTileOutline(const CColor& color, int line_width, bool draw_hidden) { RenderTileOutline(color, line_width, draw_hidden, m_i, m_j); } void TerrainOverlay::RenderTileOutline(const CColor& color, int line_width, bool draw_hidden, ssize_t i, ssize_t j) { if (draw_hidden) { glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); } else { glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); } #if CONFIG2_GLES -#warning TODO: implement TerrainOverlay::RenderTileOutline for GLES + UNUSED2(color); UNUSED2(line_width); UNUSED2(i); UNUSED2(j); + #warning TODO: implement TerrainOverlay::RenderTileOutline for GLES #else glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); if (line_width != 1) glLineWidth((float)line_width); std::vector vertices; #define ADD(i, j) \ m_Terrain->CalcPosition(i, j, position); \ vertices.emplace_back(position.X); \ vertices.emplace_back(position.Y); \ vertices.emplace_back(position.Z); CVector3D position; ADD(i, j); ADD(i+1, j); ADD(i+1, j+1); ADD(i, j+1); #undef ADD CShaderTechniquePtr overlayTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_line); overlayTech->BeginPass(); CShaderProgramPtr overlayShader = overlayTech->GetShader(); overlayShader->Bind(); overlayShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); overlayShader->Uniform(str_color, color); overlayShader->VertexPointer(3, GL_FLOAT, 0, vertices.data()); overlayShader->AssertPointersBound(); glDrawArrays(GL_QUADS, 0, vertices.size() / 3); overlayShader->Unbind(); overlayTech->EndPass(); if (line_width != 1) glLineWidth(1.0f); #endif } ////////////////////////////////////////////////////////////////////////// TerrainTextureOverlay::TerrainTextureOverlay(float texelsPerTile, int priority) : ITerrainOverlay(priority), m_TexelsPerTile(texelsPerTile) { } TerrainTextureOverlay::~TerrainTextureOverlay() = default; void TerrainTextureOverlay::RenderAfterWater(int cullGroup) { CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); ssize_t w = (ssize_t)(terrain->GetTilesPerSide() * m_TexelsPerTile); ssize_t h = (ssize_t)(terrain->GetTilesPerSide() * m_TexelsPerTile); const uint32_t requiredWidth = round_up_to_pow2(w); const uint32_t requiredHeight = round_up_to_pow2(h); glActiveTextureARB(GL_TEXTURE0); // Recreate the texture with new size if necessary if (!m_Texture || m_Texture->GetWidth() != requiredWidth || m_Texture->GetHeight() != requiredHeight) { m_Texture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::R8G8B8A8, requiredWidth, requiredHeight, Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::NEAREST, Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE)); glBindTexture(GL_TEXTURE_2D, m_Texture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_Texture->GetWidth(), m_Texture->GetHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); } u8* data = (u8*)calloc(w * h, 4); BuildTextureRGBA(data, w, h); glBindTexture(GL_TEXTURE_2D, m_Texture->GetHandle()); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, data); free(data); CMatrix3D matrix; matrix.SetZero(); matrix._11 = m_TexelsPerTile / (m_Texture->GetWidth() * TERRAIN_TILE_SIZE); matrix._23 = m_TexelsPerTile / (m_Texture->GetHeight() * TERRAIN_TILE_SIZE); matrix._44 = 1; g_Renderer.GetSceneRenderer().GetTerrainRenderer().RenderTerrainOverlayTexture(cullGroup, matrix, m_Texture.get()); } SColor4ub TerrainTextureOverlay::GetColor(size_t idx, u8 alpha) const { static u8 colors[][3] = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 }, { 255, 255, 0 }, { 255, 0, 255 }, { 0, 255, 255 }, { 255, 255, 255 }, { 127, 0, 0 }, { 0, 127, 0 }, { 0, 0, 127 }, { 127, 127, 0 }, { 127, 0, 127 }, { 0, 127, 127 }, { 127, 127, 127}, { 255, 127, 0 }, { 127, 255, 0 }, { 255, 0, 127 }, { 127, 0, 255}, { 0, 255, 127 }, { 0, 127, 255}, { 255, 127, 127}, { 127, 255, 127}, { 127, 127, 255}, { 127, 255, 255 }, { 255, 127, 255 }, { 255, 255, 127 }, }; size_t c = idx % ARRAY_SIZE(colors); return SColor4ub(colors[c][0], colors[c][1], colors[c][2], alpha); } Index: ps/trunk/source/renderer/TerrainRenderer.cpp =================================================================== --- ps/trunk/source/renderer/TerrainRenderer.cpp (revision 26166) +++ ps/trunk/source/renderer/TerrainRenderer.cpp (revision 26167) @@ -1,608 +1,609 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "renderer/TerrainRenderer.h" #include "graphics/Camera.h" #include "graphics/Canvas2D.h" #include "graphics/Decal.h" #include "graphics/GameView.h" #include "graphics/LightEnv.h" #include "graphics/LOSTexture.h" #include "graphics/Patch.h" #include "graphics/Model.h" #include "graphics/ShaderManager.h" #include "graphics/TerritoryTexture.h" #include "graphics/TextRenderer.h" #include "maths/MathUtil.h" #include "ps/CLogger.h" #include "ps/CStrInternStatic.h" #include "ps/Filesystem.h" #include "ps/Game.h" #include "ps/Profile.h" #include "ps/World.h" #include "renderer/DecalRData.h" #include "renderer/PatchRData.h" #include "renderer/Renderer.h" #include "renderer/RenderingOptions.h" #include "renderer/SceneRenderer.h" #include "renderer/ShadowMap.h" #include "renderer/SkyManager.h" #include "renderer/VertexArray.h" #include "renderer/WaterManager.h" /** * TerrainRenderer keeps track of which phase it is in, to detect * when Submit, PrepareForRendering etc. are called in the wrong order. */ enum Phase { Phase_Submit, Phase_Render }; /** * Struct TerrainRendererInternals: Internal variables used by the TerrainRenderer class. */ struct TerrainRendererInternals { /// Which phase (submitting or rendering patches) are we in right now? Phase phase; /// Patches that were submitted for this frame std::vector visiblePatches[CSceneRenderer::CULL_MAX]; /// Decals that were submitted for this frame std::vector visibleDecals[CSceneRenderer::CULL_MAX]; /// Fancy water shader CShaderTechniquePtr fancyWaterTech; CSimulation2* simulation; }; /////////////////////////////////////////////////////////////////// // Construction/Destruction TerrainRenderer::TerrainRenderer() { m = new TerrainRendererInternals(); m->phase = Phase_Submit; } TerrainRenderer::~TerrainRenderer() { delete m; } void TerrainRenderer::SetSimulation(CSimulation2* simulation) { m->simulation = simulation; } /////////////////////////////////////////////////////////////////// // Submit a patch for rendering void TerrainRenderer::Submit(int cullGroup, CPatch* patch) { ENSURE(m->phase == Phase_Submit); CPatchRData* data = (CPatchRData*)patch->GetRenderData(); if (data == 0) { // no renderdata for patch, create it now data = new CPatchRData(patch, m->simulation); patch->SetRenderData(data); } data->Update(m->simulation); m->visiblePatches[cullGroup].push_back(data); } /////////////////////////////////////////////////////////////////// // Submit a decal for rendering void TerrainRenderer::Submit(int cullGroup, CModelDecal* decal) { ENSURE(m->phase == Phase_Submit); CDecalRData* data = (CDecalRData*)decal->GetRenderData(); if (data == 0) { // no renderdata for decal, create it now data = new CDecalRData(decal, m->simulation); decal->SetRenderData(data); } data->Update(m->simulation); m->visibleDecals[cullGroup].push_back(data); } /////////////////////////////////////////////////////////////////// // Prepare for rendering void TerrainRenderer::PrepareForRendering() { ENSURE(m->phase == Phase_Submit); m->phase = Phase_Render; } /////////////////////////////////////////////////////////////////// // Clear submissions lists void TerrainRenderer::EndFrame() { ENSURE(m->phase == Phase_Render || m->phase == Phase_Submit); for (int i = 0; i < CSceneRenderer::CULL_MAX; ++i) { m->visiblePatches[i].clear(); m->visibleDecals[i].clear(); } m->phase = Phase_Submit; } void TerrainRenderer::RenderTerrainOverlayTexture(int cullGroup, CMatrix3D& textureMatrix, Renderer::Backend::GL::CTexture* texture) { #if CONFIG2_GLES #warning TODO: implement TerrainRenderer::RenderTerrainOverlayTexture for GLES UNUSED2(cullGroup); UNUSED2(textureMatrix); UNUSED2(texture); #else ENSURE(m->phase == Phase_Render); std::vector& visiblePatches = m->visiblePatches[cullGroup]; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask(0); glDisable(GL_DEPTH_TEST); CShaderTechniquePtr debugOverlayTech = g_Renderer.GetShaderManager().LoadEffect(str_debug_overlay); debugOverlayTech->BeginPass(); CShaderProgramPtr debugOverlayShader = debugOverlayTech->GetShader(); debugOverlayShader->Bind(); debugOverlayShader->BindTexture(str_baseTex, texture); debugOverlayShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); debugOverlayShader->Uniform(str_textureTransform, textureMatrix); CPatchRData::RenderStreams(visiblePatches, debugOverlayShader, STREAM_POS | STREAM_POSTOUV0); glEnable(GL_DEPTH_TEST); // To make the overlay visible over water, render an additional map-sized // water-height patch. CBoundingBoxAligned waterBounds; for (CPatchRData* data : visiblePatches) waterBounds += data->GetWaterBounds(); if (!waterBounds.IsEmpty()) { // Add a delta to avoid z-fighting. const float height = g_Renderer.GetSceneRenderer().GetWaterManager().m_WaterHeight + 0.05f; const float waterPos[] = { waterBounds[0].X, height, waterBounds[0].Z, waterBounds[1].X, height, waterBounds[0].Z, waterBounds[0].X, height, waterBounds[1].Z, waterBounds[1].X, height, waterBounds[1].Z }; const GLsizei stride = sizeof(float) * 3; debugOverlayShader->VertexPointer(3, GL_FLOAT, stride, waterPos); debugOverlayShader->TexCoordPointer(GL_TEXTURE0, 3, GL_FLOAT, stride, waterPos); debugOverlayShader->AssertPointersBound(); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } debugOverlayShader->Unbind(); debugOverlayTech->EndPass(); glDepthMask(1); glDisable(GL_BLEND); #endif } /////////////////////////////////////////////////////////////////// /** * Set up all the uniforms for a shader pass. */ void TerrainRenderer::PrepareShader(const CShaderProgramPtr& shader, ShadowMap* shadow) { CSceneRenderer& sceneRenderer = g_Renderer.GetSceneRenderer(); shader->Uniform(str_transform, sceneRenderer.GetViewCamera().GetViewProjection()); shader->Uniform(str_cameraPos, sceneRenderer.GetViewCamera().GetOrientation().GetTranslation()); const CLightEnv& lightEnv = sceneRenderer.GetLightEnv(); if (shadow) shadow->BindTo(shader); CLOSTexture& los = sceneRenderer.GetScene().GetLOSTexture(); shader->BindTexture(str_losTex, los.GetTextureSmooth()); shader->Uniform(str_losTransform, los.GetTextureMatrix()[0], los.GetTextureMatrix()[12], 0.f, 0.f); shader->Uniform(str_ambient, lightEnv.m_AmbientColor); shader->Uniform(str_sunColor, lightEnv.m_SunColor); shader->Uniform(str_sunDir, lightEnv.GetSunDir()); shader->Uniform(str_fogColor, lightEnv.m_FogColor); shader->Uniform(str_fogParams, lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f); } void TerrainRenderer::RenderTerrainShader(const CShaderDefines& context, int cullGroup, ShadowMap* shadow) { ENSURE(m->phase == Phase_Render); std::vector& visiblePatches = m->visiblePatches[cullGroup]; std::vector& visibleDecals = m->visibleDecals[cullGroup]; if (visiblePatches.empty() && visibleDecals.empty()) return; // render the solid black sides of the map first CShaderTechniquePtr techSolid = g_Renderer.GetShaderManager().LoadEffect(str_solid); techSolid->BeginPass(); CShaderProgramPtr shaderSolid = techSolid->GetShader(); shaderSolid->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); shaderSolid->Uniform(str_color, 0.0f, 0.0f, 0.0f, 1.0f); CPatchRData::RenderSides(visiblePatches, shaderSolid); techSolid->EndPass(); CPatchRData::RenderBases(visiblePatches, context, shadow); // no need to write to the depth buffer a second time glDepthMask(0); // render blend passes for each patch CPatchRData::RenderBlends(visiblePatches, context, shadow); CDecalRData::RenderDecals(visibleDecals, context, shadow); // restore OpenGL state g_Renderer.BindTexture(1, 0); g_Renderer.BindTexture(2, 0); g_Renderer.BindTexture(3, 0); glDepthMask(1); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_BLEND); } /////////////////////////////////////////////////////////////////// // Render un-textured patches as polygons void TerrainRenderer::RenderPatches(int cullGroup, const CColor& color) { ENSURE(m->phase == Phase_Render); std::vector& visiblePatches = m->visiblePatches[cullGroup]; if (visiblePatches.empty()) return; #if CONFIG2_GLES -#warning TODO: implement TerrainRenderer::RenderPatches for GLES + UNUSED2(color); + #warning TODO: implement TerrainRenderer::RenderPatches for GLES #else CShaderTechniquePtr dummyTech = g_Renderer.GetShaderManager().LoadEffect(str_dummy); dummyTech->BeginPass(); CShaderProgramPtr dummyShader = dummyTech->GetShader(); dummyShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); dummyShader->Uniform(str_color, color); CPatchRData::RenderStreams(visiblePatches, dummyShader, STREAM_POS); dummyTech->EndPass(); #endif } /////////////////////////////////////////////////////////////////// // Render outlines of submitted patches as lines void TerrainRenderer::RenderOutlines(int cullGroup) { ENSURE(m->phase == Phase_Render); std::vector& visiblePatches = m->visiblePatches[cullGroup]; if (visiblePatches.empty()) return; for (size_t i = 0; i < visiblePatches.size(); ++i) visiblePatches[i]->RenderOutline(); } /////////////////////////////////////////////////////////////////// // Scissor rectangle of water patches CBoundingBoxAligned TerrainRenderer::ScissorWater(int cullGroup, const CCamera& camera) { CBoundingBoxAligned scissor; for (const CPatchRData* data : m->visiblePatches[cullGroup]) { const CBoundingBoxAligned& waterBounds = data->GetWaterBounds(); if (waterBounds.IsEmpty()) continue; const CBoundingBoxAligned waterBoundsInViewPort = camera.GetBoundsInViewPort(waterBounds); if (!waterBoundsInViewPort.IsEmpty()) scissor += waterBoundsInViewPort; } return CBoundingBoxAligned( CVector3D(Clamp(scissor[0].X, -1.0f, 1.0f), Clamp(scissor[0].Y, -1.0f, 1.0f), -1.0f), CVector3D(Clamp(scissor[1].X, -1.0f, 1.0f), Clamp(scissor[1].Y, -1.0f, 1.0f), 1.0f)); } // Render fancy water bool TerrainRenderer::RenderFancyWater(const CShaderDefines& context, int cullGroup, ShadowMap* shadow) { PROFILE3_GPU("fancy water"); OGL_SCOPED_DEBUG_GROUP("Render Fancy Water"); CSceneRenderer& sceneRenderer = g_Renderer.GetSceneRenderer(); WaterManager& waterManager = sceneRenderer.GetWaterManager(); CShaderDefines defines = context; // If we're using fancy water, make sure its shader is loaded if (!m->fancyWaterTech || waterManager.m_NeedsReloading) { if (waterManager.m_WaterRealDepth) defines.Add(str_USE_REAL_DEPTH, str_1); if (waterManager.m_WaterFancyEffects) defines.Add(str_USE_FANCY_EFFECTS, str_1); if (waterManager.m_WaterRefraction) defines.Add(str_USE_REFRACTION, str_1); if (waterManager.m_WaterReflection) defines.Add(str_USE_REFLECTION, str_1); m->fancyWaterTech = g_Renderer.GetShaderManager().LoadEffect(str_water_high, defines); if (!m->fancyWaterTech) { LOGERROR("Failed to load water shader. Falling back to a simple water.\n"); waterManager.m_RenderWater = false; return false; } waterManager.m_NeedsReloading = false; } CLOSTexture& losTexture = sceneRenderer.GetScene().GetLOSTexture(); // Calculating the advanced informations about Foam and all if the quality calls for it. /*if (WaterMgr->m_NeedInfoUpdate && (WaterMgr->m_WaterFoam || WaterMgr->m_WaterCoastalWaves)) { WaterMgr->m_NeedInfoUpdate = false; WaterMgr->CreateSuperfancyInfo(); }*/ const double time = waterManager.m_WaterTexTimer; const float repeatPeriod = waterManager.m_RepeatPeriod; // Render normals and foam to a framebuffer if we're in fancy effects if (waterManager.m_WaterFancyEffects) { // Save the post-processing framebuffer. GLint fbo; glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, &fbo); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, waterManager.m_FancyEffectsFBO); glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glDisable(GL_CULL_FACE); // Overwrite waves that would be behind the ground. CShaderTechniquePtr dummyTech = g_Renderer.GetShaderManager().LoadEffect(str_solid); dummyTech->BeginPass(); CShaderProgramPtr dummyShader = dummyTech->GetShader(); dummyShader->Uniform(str_transform, sceneRenderer.GetViewCamera().GetViewProjection()); dummyShader->Uniform(str_color, 0.0f, 0.0f, 0.0f, 0.0f); std::vector& visiblePatches = m->visiblePatches[cullGroup]; for (size_t i = 0; i < visiblePatches.size(); ++i) { CPatchRData* data = visiblePatches[i]; data->RenderWater(dummyShader, true, true); } dummyTech->EndPass(); glEnable(GL_CULL_FACE); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo); } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); m->fancyWaterTech->BeginPass(); CShaderProgramPtr fancyWaterShader = m->fancyWaterTech->GetShader(); const CCamera& camera = g_Renderer.GetSceneRenderer().GetViewCamera(); const double period = 8.0; fancyWaterShader->BindTexture(str_normalMap, waterManager.m_NormalMap[waterManager.GetCurrentTextureIndex(period)]); fancyWaterShader->BindTexture(str_normalMap2, waterManager.m_NormalMap[waterManager.GetNextTextureIndex(period)]); if (waterManager.m_WaterFancyEffects) { fancyWaterShader->BindTexture(str_waterEffectsTex, waterManager.m_FancyTexture.get()); } if (waterManager.m_WaterRefraction && waterManager.m_WaterRealDepth) { fancyWaterShader->BindTexture(str_depthTex, waterManager.m_RefrFboDepthTexture.get()); fancyWaterShader->Uniform(str_projInvTransform, waterManager.m_RefractionProjInvMatrix); fancyWaterShader->Uniform(str_viewInvTransform, waterManager.m_RefractionViewInvMatrix); } if (waterManager.m_WaterRefraction) fancyWaterShader->BindTexture(str_refractionMap, waterManager.m_RefractionTexture.get()); if (waterManager.m_WaterReflection) fancyWaterShader->BindTexture(str_reflectionMap, waterManager.m_ReflectionTexture.get()); fancyWaterShader->BindTexture(str_losTex, losTexture.GetTextureSmooth()); const CLightEnv& lightEnv = sceneRenderer.GetLightEnv(); fancyWaterShader->Uniform(str_transform, sceneRenderer.GetViewCamera().GetViewProjection()); fancyWaterShader->BindTexture(str_skyCube, sceneRenderer.GetSkyManager().GetSkyCube()); // TODO: check that this rotates in the right direction. CMatrix3D skyBoxRotation; skyBoxRotation.SetIdentity(); skyBoxRotation.RotateY(M_PI + lightEnv.GetRotation()); fancyWaterShader->Uniform(str_skyBoxRot, skyBoxRotation); if (waterManager.m_WaterRefraction) fancyWaterShader->Uniform(str_refractionMatrix, waterManager.m_RefractionMatrix); if (waterManager.m_WaterReflection) fancyWaterShader->Uniform(str_reflectionMatrix, waterManager.m_ReflectionMatrix); fancyWaterShader->Uniform(str_ambient, lightEnv.m_AmbientColor); fancyWaterShader->Uniform(str_sunDir, lightEnv.GetSunDir()); fancyWaterShader->Uniform(str_sunColor, lightEnv.m_SunColor); fancyWaterShader->Uniform(str_color, waterManager.m_WaterColor); fancyWaterShader->Uniform(str_tint, waterManager.m_WaterTint); fancyWaterShader->Uniform(str_waviness, waterManager.m_Waviness); fancyWaterShader->Uniform(str_murkiness, waterManager.m_Murkiness); fancyWaterShader->Uniform(str_windAngle, waterManager.m_WindAngle); fancyWaterShader->Uniform(str_repeatScale, 1.0f / repeatPeriod); fancyWaterShader->Uniform(str_losTransform, losTexture.GetTextureMatrix()[0], losTexture.GetTextureMatrix()[12], 0.f, 0.f); fancyWaterShader->Uniform(str_cameraPos, camera.GetOrientation().GetTranslation()); fancyWaterShader->Uniform(str_fogColor, lightEnv.m_FogColor); fancyWaterShader->Uniform(str_fogParams, lightEnv.m_FogFactor, lightEnv.m_FogMax, 0.f, 0.f); fancyWaterShader->Uniform(str_time, (float)time); fancyWaterShader->Uniform(str_screenSize, (float)g_Renderer.GetWidth(), (float)g_Renderer.GetHeight(), 0.0f, 0.0f); if (waterManager.m_WaterType == L"clap") { fancyWaterShader->Uniform(str_waveParams1, 30.0f,1.5f,20.0f,0.03f); fancyWaterShader->Uniform(str_waveParams2, 0.5f,0.0f,0.0f,0.0f); } else if (waterManager.m_WaterType == L"lake") { fancyWaterShader->Uniform(str_waveParams1, 8.5f,1.5f,15.0f,0.03f); fancyWaterShader->Uniform(str_waveParams2, 0.2f,0.0f,0.0f,0.07f); } else { fancyWaterShader->Uniform(str_waveParams1, 15.0f,0.8f,10.0f,0.1f); fancyWaterShader->Uniform(str_waveParams2, 0.3f,0.0f,0.1f,0.3f); } if (shadow) shadow->BindTo(fancyWaterShader); std::vector& visiblePatches = m->visiblePatches[cullGroup]; for (size_t i = 0; i < visiblePatches.size(); ++i) { CPatchRData* data = visiblePatches[i]; data->RenderWater(fancyWaterShader); } m->fancyWaterTech->EndPass(); glDepthFunc(GL_LEQUAL); glDisable(GL_BLEND); return true; } void TerrainRenderer::RenderSimpleWater(int cullGroup) { #if CONFIG2_GLES UNUSED2(cullGroup); #else PROFILE3_GPU("simple water"); OGL_SCOPED_DEBUG_GROUP("Render Simple Water"); const WaterManager& waterManager = g_Renderer.GetSceneRenderer().GetWaterManager(); CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture(); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); const double time = waterManager.m_WaterTexTimer; CShaderTechniquePtr waterSimpleTech = g_Renderer.GetShaderManager().LoadEffect(str_water_simple); waterSimpleTech->BeginPass(); CShaderProgramPtr waterSimpleShader = waterSimpleTech->GetShader(); waterSimpleShader->Bind(); waterSimpleShader->BindTexture(str_baseTex, waterManager.m_WaterTexture[waterManager.GetCurrentTextureIndex(1.6)]); waterSimpleShader->BindTexture(str_losTex, losTexture.GetTextureSmooth()); waterSimpleShader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); waterSimpleShader->Uniform(str_losTransform, losTexture.GetTextureMatrix()[0], losTexture.GetTextureMatrix()[12], 0.f, 0.f); waterSimpleShader->Uniform(str_time, static_cast(time)); waterSimpleShader->Uniform(str_color, waterManager.m_WaterColor); std::vector& visiblePatches = m->visiblePatches[cullGroup]; for (size_t i = 0; i < visiblePatches.size(); ++i) { CPatchRData* data = visiblePatches[i]; data->RenderWater(waterSimpleShader, false, true); } waterSimpleShader->Unbind(); g_Renderer.BindTexture(1, 0); glActiveTextureARB(GL_TEXTURE0_ARB); waterSimpleTech->EndPass(); #endif } /////////////////////////////////////////////////////////////////// // Render water that is part of the terrain void TerrainRenderer::RenderWater(const CShaderDefines& context, int cullGroup, ShadowMap* shadow) { WaterManager& waterManager = g_Renderer.GetSceneRenderer().GetWaterManager(); waterManager.UpdateQuality(); if (!waterManager.WillRenderFancyWater()) RenderSimpleWater(cullGroup); else RenderFancyWater(context, cullGroup, shadow); } void TerrainRenderer::RenderPriorities(int cullGroup) { PROFILE("priorities"); ENSURE(m->phase == Phase_Render); CCanvas2D canvas; CTextRenderer textRenderer; textRenderer.SetCurrentFont(CStrIntern("mono-stroke-10")); textRenderer.SetCurrentColor(CColor(1.0f, 1.0f, 0.0f, 1.0f)); std::vector& visiblePatches = m->visiblePatches[cullGroup]; for (size_t i = 0; i < visiblePatches.size(); ++i) visiblePatches[i]->RenderPriorities(textRenderer); canvas.DrawText(textRenderer); } Index: ps/trunk/source/renderer/WaterManager.cpp =================================================================== --- ps/trunk/source/renderer/WaterManager.cpp (revision 26166) +++ ps/trunk/source/renderer/WaterManager.cpp (revision 26167) @@ -1,1107 +1,1108 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "graphics/Terrain.h" #include "graphics/TextureManager.h" #include "graphics/ShaderManager.h" #include "graphics/ShaderProgram.h" #include "lib/bits.h" #include "lib/timer.h" #include "lib/ogl.h" #include "lib/tex/tex.h" #include "maths/MathUtil.h" #include "maths/Vector2D.h" #include "ps/CLogger.h" #include "ps/CStrInternStatic.h" #include "ps/Game.h" #include "ps/VideoMode.h" #include "ps/World.h" #include "renderer/WaterManager.h" #include "renderer/Renderer.h" #include "renderer/RenderingOptions.h" #include "renderer/SceneRenderer.h" #include "simulation2/Simulation2.h" #include "simulation2/components/ICmpWaterManager.h" #include "simulation2/components/ICmpRangeManager.h" struct CoastalPoint { CoastalPoint(int idx, CVector2D pos) : index(idx), position(pos) {}; int index; CVector2D position; }; struct SWavesVertex { // vertex position CVector3D m_BasePosition; CVector3D m_ApexPosition; CVector3D m_SplashPosition; CVector3D m_RetreatPosition; CVector2D m_PerpVect; u8 m_UV[3]; // pad to a power of two u8 m_Padding[5]; }; cassert(sizeof(SWavesVertex) == 64); struct WaveObject { CVertexBuffer::VBChunk* m_VBvertices; CBoundingBoxAligned m_AABB; size_t m_Width; float m_TimeDiff; }; WaterManager::WaterManager() { // water m_RenderWater = false; // disabled until textures are successfully loaded m_WaterHeight = 5.0f; m_RefTextureSize = 0; m_ReflectionFbo = 0; m_RefractionFbo = 0; m_FancyEffectsFBO = 0; m_WaterTexTimer = 0.0; m_WindAngle = 0.0f; m_Waviness = 8.0f; m_WaterColor = CColor(0.3f, 0.35f, 0.7f, 1.0f); m_WaterTint = CColor(0.28f, 0.3f, 0.59f, 1.0f); m_Murkiness = 0.45f; m_RepeatPeriod = 16.0f; m_DistanceHeightmap = NULL; m_BlurredNormalMap = NULL; m_WindStrength = NULL; m_ShoreWaves_VBIndices = NULL; m_WaterEffects = true; m_WaterFancyEffects = false; m_WaterRealDepth = false; m_WaterRefraction = false; m_WaterReflection = false; m_WaterType = L"ocean"; m_NeedsReloading = false; m_NeedInfoUpdate = true; m_MapSize = 0; m_updatei0 = 0; m_updatej0 = 0; m_updatei1 = 0; m_updatej1 = 0; } WaterManager::~WaterManager() { // Cleanup if the caller messed up UnloadWaterTextures(); for (WaveObject* const& obj : m_ShoreWaves) { if (obj->m_VBvertices) g_VBMan.Release(obj->m_VBvertices); delete obj; } if (m_ShoreWaves_VBIndices) g_VBMan.Release(m_ShoreWaves_VBIndices); delete[] m_DistanceHeightmap; delete[] m_BlurredNormalMap; delete[] m_WindStrength; if (!g_Renderer.GetCapabilities().m_PrettyWater) return; m_FancyTexture.reset(); m_FancyTextureDepth.reset(); m_ReflFboDepthTexture.reset(); m_RefrFboDepthTexture.reset(); glDeleteFramebuffersEXT(1, &m_FancyEffectsFBO); glDeleteFramebuffersEXT(1, &m_RefractionFbo); glDeleteFramebuffersEXT(1, &m_ReflectionFbo); } /////////////////////////////////////////////////////////////////// // Progressive load of water textures int WaterManager::LoadWaterTextures() { // TODO: this doesn't need to be progressive-loading any more // (since texture loading is async now) wchar_t pathname[PATH_MAX]; // Load diffuse grayscale images (for non-fancy water) for (size_t i = 0; i < ARRAY_SIZE(m_WaterTexture); ++i) { swprintf_s(pathname, ARRAY_SIZE(pathname), L"art/textures/animated/water/default/diffuse%02d.dds", (int)i+1); CTextureProperties textureProps(pathname); textureProps.SetWrap(GL_REPEAT); CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps); texture->Prefetch(); m_WaterTexture[i] = texture; } if (!g_Renderer.GetCapabilities().m_PrettyWater) { // Enable rendering, now that we've succeeded this far m_RenderWater = true; return 0; } #if CONFIG2_GLES #warning Fix WaterManager::LoadWaterTextures on GLES #else // Load normalmaps (for fancy water) ReloadWaterNormalTextures(); // Load CoastalWaves { CTextureProperties textureProps(L"art/textures/terrain/types/water/coastalWave.png"); textureProps.SetWrap(GL_REPEAT); CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps); texture->Prefetch(); m_WaveTex = texture; } // Load Foam { CTextureProperties textureProps(L"art/textures/terrain/types/water/foam.png"); textureProps.SetWrap(GL_REPEAT); CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps); texture->Prefetch(); m_FoamTex = texture; } // Use screen-sized textures for minimum artifacts. m_RefTextureSize = g_Renderer.GetHeight(); m_RefTextureSize = round_up_to_pow2(m_RefTextureSize); // Create reflection texture m_ReflectionTexture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::R8G8B8A8, m_RefTextureSize, m_RefTextureSize, Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::LINEAR, Renderer::Backend::Sampler::AddressMode::MIRRORED_REPEAT)); glBindTexture(GL_TEXTURE_2D, m_ReflectionTexture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); // Create refraction texture m_RefractionTexture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::R8G8B8A8, m_RefTextureSize, m_RefTextureSize, Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::LINEAR, Renderer::Backend::Sampler::AddressMode::MIRRORED_REPEAT)); glBindTexture(GL_TEXTURE_2D, m_RefractionTexture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); // Create depth textures m_ReflFboDepthTexture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::D32, m_RefTextureSize, m_RefTextureSize, Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::NEAREST, Renderer::Backend::Sampler::AddressMode::REPEAT)); glBindTexture(GL_TEXTURE_2D, m_ReflFboDepthTexture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL); m_RefrFboDepthTexture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::D32, m_RefTextureSize, m_RefTextureSize, Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::NEAREST, Renderer::Backend::Sampler::AddressMode::REPEAT)); glBindTexture(GL_TEXTURE_2D, m_RefrFboDepthTexture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)m_RefTextureSize, (GLsizei)m_RefTextureSize, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL); glBindTexture(GL_TEXTURE_2D, 0); Resize(); // Create the water framebuffers GLint currentFbo; glGetIntegerv(GL_FRAMEBUFFER_BINDING_EXT, ¤tFbo); m_ReflectionFbo = 0; glGenFramebuffersEXT(1, &m_ReflectionFbo); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_ReflectionFbo); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_ReflectionTexture->GetHandle(), 0); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_ReflFboDepthTexture->GetHandle(), 0); ogl_WarnIfError(); GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if (status != GL_FRAMEBUFFER_COMPLETE_EXT) { LOGWARNING("Reflection framebuffer object incomplete: 0x%04X", status); g_RenderingOptions.SetWaterReflection(false); UpdateQuality(); } m_RefractionFbo = 0; glGenFramebuffersEXT(1, &m_RefractionFbo); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_RefractionFbo); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_RefractionTexture->GetHandle(), 0); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_RefrFboDepthTexture->GetHandle(), 0); ogl_WarnIfError(); status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if (status != GL_FRAMEBUFFER_COMPLETE_EXT) { LOGWARNING("Refraction framebuffer object incomplete: 0x%04X", status); g_RenderingOptions.SetWaterRefraction(false); UpdateQuality(); } glGenFramebuffersEXT(1, &m_FancyEffectsFBO); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_FancyEffectsFBO); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, m_FancyTexture->GetHandle(), 0); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, m_FancyTextureDepth->GetHandle(), 0); ogl_WarnIfError(); status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); if (status != GL_FRAMEBUFFER_COMPLETE_EXT) { LOGWARNING("Fancy Effects framebuffer object incomplete: 0x%04X", status); g_RenderingOptions.SetWaterRefraction(false); UpdateQuality(); } glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, currentFbo); // Enable rendering, now that we've succeeded this far m_RenderWater = true; #endif return 0; } /////////////////////////////////////////////////////////////////// // Resize: Updates the fancy water textures. void WaterManager::Resize() { // Create the Fancy Effects texture m_FancyTexture = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::R8G8B8A8, g_Renderer.GetWidth(), g_Renderer.GetHeight(), Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::LINEAR, Renderer::Backend::Sampler::AddressMode::REPEAT)); glBindTexture(GL_TEXTURE_2D, m_FancyTexture->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, (GLsizei)g_Renderer.GetWidth(), (GLsizei)g_Renderer.GetHeight(), 0, GL_RGBA, GL_UNSIGNED_SHORT, NULL); m_FancyTextureDepth = Renderer::Backend::GL::CTexture::Create2D( Renderer::Backend::Format::D32, g_Renderer.GetWidth(), g_Renderer.GetHeight(), Renderer::Backend::Sampler::MakeDefaultSampler( Renderer::Backend::Sampler::Filter::LINEAR, Renderer::Backend::Sampler::AddressMode::REPEAT)); glBindTexture(GL_TEXTURE_2D, m_FancyTextureDepth->GetHandle()); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT32, (GLsizei)g_Renderer.GetWidth(), (GLsizei)g_Renderer.GetHeight(), 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, NULL); glBindTexture(GL_TEXTURE_2D, 0); } void WaterManager::ReloadWaterNormalTextures() { wchar_t pathname[PATH_MAX]; for (size_t i = 0; i < ARRAY_SIZE(m_NormalMap); ++i) { swprintf_s(pathname, ARRAY_SIZE(pathname), L"art/textures/animated/water/%ls/normal00%02d.png", m_WaterType.c_str(), static_cast(i) + 1); CTextureProperties textureProps(pathname); textureProps.SetWrap(GL_REPEAT); textureProps.SetMaxAnisotropy(4); CTexturePtr texture = g_Renderer.GetTextureManager().CreateTexture(textureProps); texture->Prefetch(); m_NormalMap[i] = texture; } } /////////////////////////////////////////////////////////////////// // Unload water textures void WaterManager::UnloadWaterTextures() { for (size_t i = 0; i < ARRAY_SIZE(m_WaterTexture); i++) m_WaterTexture[i].reset(); if (!g_Renderer.GetCapabilities().m_PrettyWater) return; for (size_t i = 0; i < ARRAY_SIZE(m_NormalMap); i++) m_NormalMap[i].reset(); m_ReflectionTexture.reset(); m_RefractionTexture.reset(); glDeleteFramebuffersEXT(1, &m_RefractionFbo); glDeleteFramebuffersEXT(1, &m_ReflectionFbo); } template static inline void ComputeDirection(float* distanceMap, const u16* heightmap, float waterHeight, size_t SideSize, size_t maxLevel) { #define ABOVEWATER(x, z) (HEIGHT_SCALE * heightmap[z*SideSize + x] >= waterHeight) #define UPDATELOOKAHEAD \ for (; lookahead <= id2+maxLevel && lookahead < SideSize && \ ((!Transpose && !ABOVEWATER(lookahead, id1)) || (Transpose && !ABOVEWATER(id1, lookahead))); ++lookahead) // Algorithm: // We want to know the distance to the closest shore point. Go through each line/column, // keep track of when we encountered the last shore point and how far ahead the next one is. for (size_t id1 = 0; id1 < SideSize; ++id1) { size_t id2 = 0; const size_t& x = Transpose ? id1 : id2; const size_t& z = Transpose ? id2 : id1; size_t level = ABOVEWATER(x, z) ? 0 : maxLevel; size_t lookahead = (size_t)(level > 0); UPDATELOOKAHEAD; // start moving for (; id2 < SideSize; ++id2) { // update current level if (ABOVEWATER(x, z)) level = 0; else level = std::min(level+1, maxLevel); // move lookahead if (lookahead == id2) ++lookahead; UPDATELOOKAHEAD; // This is the important bit: set the distance to either: // - the distance to the previous shore point (level) // - the distance to the next shore point (lookahead-id2) distanceMap[z*SideSize + x] = std::min(distanceMap[z*SideSize + x], (float)std::min(lookahead-id2, level)); } } #undef ABOVEWATER #undef UPDATELOOKAHEAD } /////////////////////////////////////////////////////////////////// // Calculate our binary heightmap from the terrain heightmap. void WaterManager::RecomputeDistanceHeightmap() { CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); if (!terrain || !terrain->GetHeightMap()) return; size_t SideSize = m_MapSize; // we want to look ahead some distance, but not too much (less efficient and not interesting). This is our lookahead. const size_t maxLevel = 5; if (m_DistanceHeightmap == NULL) { m_DistanceHeightmap = new float[SideSize*SideSize]; std::fill(m_DistanceHeightmap, m_DistanceHeightmap + SideSize*SideSize, (float)maxLevel); } // Create a manhattan-distance heightmap. // This could be refined to only be done near the coast itself, but it's probably not necessary. u16* heightmap = terrain->GetHeightMap(); ComputeDirection(m_DistanceHeightmap, heightmap, m_WaterHeight, SideSize, maxLevel); ComputeDirection(m_DistanceHeightmap, heightmap, m_WaterHeight, SideSize, maxLevel); } // This requires m_DistanceHeightmap to be defined properly. void WaterManager::CreateWaveMeshes() { OGL_SCOPED_DEBUG_GROUP("Create Wave Meshes"); if (m_MapSize == 0) return; CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); if (!terrain || !terrain->GetHeightMap()) return; for (WaveObject* const& obj : m_ShoreWaves) { if (obj->m_VBvertices) g_VBMan.Release(obj->m_VBvertices); delete obj; } m_ShoreWaves.clear(); if (m_ShoreWaves_VBIndices) { g_VBMan.Release(m_ShoreWaves_VBIndices); m_ShoreWaves_VBIndices = NULL; } if (m_Waviness < 5.0f && m_WaterType != L"ocean") return; size_t SideSize = m_MapSize; // First step: get the points near the coast. std::set CoastalPointsSet; for (size_t z = 1; z < SideSize-1; ++z) for (size_t x = 1; x < SideSize-1; ++x) // get the points not on the shore but near it, ocean-side if (m_DistanceHeightmap[z*m_MapSize + x] > 0.5f && m_DistanceHeightmap[z*m_MapSize + x] < 1.5f) CoastalPointsSet.insert((z)*SideSize + x); // Second step: create chains out of those coastal points. static const int around[8][2] = { { -1,-1 }, { -1,0 }, { -1,1 }, { 0,1 }, { 1,1 }, { 1,0 }, { 1,-1 }, { 0,-1 } }; std::vector > CoastalPointsChains; while (!CoastalPointsSet.empty()) { int index = *(CoastalPointsSet.begin()); int x = index % SideSize; int y = (index - x ) / SideSize; std::deque Chain; Chain.push_front(CoastalPoint(index,CVector2D(x*4,y*4))); // Erase us. CoastalPointsSet.erase(CoastalPointsSet.begin()); // We're our starter points. At most we can have 2 points close to us. // We'll pick the first one and look for its neighbors (he can only have one new) // Up until we either reach the end of the chain, or ourselves. // Then go down the other direction if there is any. int neighbours[2] = { -1, -1 }; int nbNeighb = 0; for (int i = 0; i < 8; ++i) { if (CoastalPointsSet.count(x + around[i][0] + (y + around[i][1])*SideSize)) { if (nbNeighb < 2) neighbours[nbNeighb] = x + around[i][0] + (y + around[i][1])*SideSize; ++nbNeighb; } } if (nbNeighb > 2) continue; for (int i = 0; i < 2; ++i) { if (neighbours[i] == -1) continue; // Move to our neighboring point int xx = neighbours[i] % SideSize; int yy = (neighbours[i] - xx ) / SideSize; int indexx = xx + yy*SideSize; int endedChain = false; if (i == 0) Chain.push_back(CoastalPoint(indexx,CVector2D(xx*4,yy*4))); else Chain.push_front(CoastalPoint(indexx,CVector2D(xx*4,yy*4))); // If there's a loop we'll be the "other" neighboring point already so check for that. // We'll readd at the end/front the other one to have full squares. if (CoastalPointsSet.count(indexx) == 0) break; CoastalPointsSet.erase(indexx); // Start checking from there. while(!endedChain) { bool found = false; nbNeighb = 0; for (int p = 0; p < 8; ++p) { if (CoastalPointsSet.count(xx+around[p][0] + (yy + around[p][1])*SideSize)) { if (nbNeighb >= 2) { CoastalPointsSet.erase(xx + yy*SideSize); continue; } ++nbNeighb; // We've found a new point around us. // Move there xx = xx + around[p][0]; yy = yy + around[p][1]; indexx = xx + yy*SideSize; if (i == 0) Chain.push_back(CoastalPoint(indexx,CVector2D(xx*4,yy*4))); else Chain.push_front(CoastalPoint(indexx,CVector2D(xx*4,yy*4))); CoastalPointsSet.erase(xx + yy*SideSize); found = true; break; } } if (!found) endedChain = true; } } if (Chain.size() > 10) CoastalPointsChains.push_back(Chain); } // (optional) third step: Smooth chains out. // This is also really dumb. for (size_t i = 0; i < CoastalPointsChains.size(); ++i) { // Bump 1 for smoother. for (int p = 0; p < 3; ++p) { for (size_t j = 1; j < CoastalPointsChains[i].size()-1; ++j) { CVector2D realPos = CoastalPointsChains[i][j-1].position + CoastalPointsChains[i][j+1].position; CoastalPointsChains[i][j].position = (CoastalPointsChains[i][j].position + realPos/2.0f)/2.0f; } } } // Fourth step: create waves themselves, using those chains. We basically create subchains. GLushort waveSizes = 14; // maximal size in width. // Construct indices buffer (we can afford one for all of them) std::vector water_indices; for (GLushort a = 0; a < waveSizes - 1; ++a) { for (GLushort rect = 0; rect < 7; ++rect) { water_indices.push_back(a * 9 + rect); water_indices.push_back(a * 9 + 9 + rect); water_indices.push_back(a * 9 + 1 + rect); water_indices.push_back(a * 9 + 9 + rect); water_indices.push_back(a * 9 + 10 + rect); water_indices.push_back(a * 9 + 1 + rect); } } // Generic indexes, max-length m_ShoreWaves_VBIndices = g_VBMan.Allocate(sizeof(GLushort), water_indices.size(), GL_STATIC_DRAW, GL_ELEMENT_ARRAY_BUFFER); m_ShoreWaves_VBIndices->m_Owner->UpdateChunkVertices(m_ShoreWaves_VBIndices, &water_indices[0]); float diff = (rand() % 50) / 5.0f; for (size_t i = 0; i < CoastalPointsChains.size(); ++i) { for (size_t j = 0; j < CoastalPointsChains[i].size()-waveSizes; ++j) { if (CoastalPointsChains[i].size()- 1 - j < waveSizes) break; GLushort width = waveSizes; // First pass to get some parameters out. float outmost = 0.0f; // how far to move on the shore. float avgDepth = 0.0f; int sign = 1; CVector2D firstPerp(0,0), perp(0,0), lastPerp(0,0); for (GLushort a = 0; a < waveSizes;++a) { lastPerp = perp; perp = CVector2D(0,0); int nb = 0; CVector2D pos = CoastalPointsChains[i][j+a].position; CVector2D posPlus; CVector2D posMinus; if (a > 0) { ++nb; posMinus = CoastalPointsChains[i][j+a-1].position; perp += pos-posMinus; } if (a < waveSizes-1) { ++nb; posPlus = CoastalPointsChains[i][j+a+1].position; perp += posPlus-pos; } perp /= nb; perp = CVector2D(-perp.Y,perp.X).Normalized(); if (a == 0) firstPerp = perp; if ( a > 1 && perp.Dot(lastPerp) < 0.90f && perp.Dot(firstPerp) < 0.70f) { width = a+1; break; } if (terrain->GetExactGroundLevel(pos.X+perp.X*1.5f, pos.Y+perp.Y*1.5f) > m_WaterHeight) sign = -1; avgDepth += terrain->GetExactGroundLevel(pos.X+sign*perp.X*20.0f, pos.Y+sign*perp.Y*20.0f) - m_WaterHeight; float localOutmost = -2.0f; while (localOutmost < 0.0f) { float depth = terrain->GetExactGroundLevel(pos.X+sign*perp.X*localOutmost, pos.Y+sign*perp.Y*localOutmost) - m_WaterHeight; if (depth < 0.0f || depth > 0.6f) localOutmost += 0.2f; else break; } outmost += localOutmost; } if (width < 5) { j += 6; continue; } outmost /= width; if (outmost > -0.5f) { j += 3; continue; } outmost = -2.5f + outmost * m_Waviness/10.0f; avgDepth /= width; if (avgDepth > -1.3f) { j += 3; continue; } // we passed the checks, we can create a wave of size "width". WaveObject* shoreWave = new WaveObject; std::vector vertices; vertices.reserve(9*width); shoreWave->m_Width = width; shoreWave->m_TimeDiff = diff; diff += (rand() % 100) / 25.0f + 4.0f; for (GLushort a = 0; a < width;++a) { perp = CVector2D(0,0); int nb = 0; CVector2D pos = CoastalPointsChains[i][j+a].position; CVector2D posPlus; CVector2D posMinus; if (a > 0) { ++nb; posMinus = CoastalPointsChains[i][j+a-1].position; perp += pos-posMinus; } if (a < waveSizes-1) { ++nb; posPlus = CoastalPointsChains[i][j+a+1].position; perp += posPlus-pos; } perp /= nb; perp = CVector2D(-perp.Y,perp.X).Normalized(); SWavesVertex point[9]; float baseHeight = 0.04f; float halfWidth = (width-1.0f)/2.0f; float sideNess = sqrtf(Clamp( (halfWidth - fabsf(a - halfWidth)) / 3.0f, 0.0f, 1.0f)); point[0].m_UV[0] = a; point[0].m_UV[1] = 8; point[1].m_UV[0] = a; point[1].m_UV[1] = 7; point[2].m_UV[0] = a; point[2].m_UV[1] = 6; point[3].m_UV[0] = a; point[3].m_UV[1] = 5; point[4].m_UV[0] = a; point[4].m_UV[1] = 4; point[5].m_UV[0] = a; point[5].m_UV[1] = 3; point[6].m_UV[0] = a; point[6].m_UV[1] = 2; point[7].m_UV[0] = a; point[7].m_UV[1] = 1; point[8].m_UV[0] = a; point[8].m_UV[1] = 0; point[0].m_PerpVect = perp; point[1].m_PerpVect = perp; point[2].m_PerpVect = perp; point[3].m_PerpVect = perp; point[4].m_PerpVect = perp; point[5].m_PerpVect = perp; point[6].m_PerpVect = perp; point[7].m_PerpVect = perp; point[8].m_PerpVect = perp; static const float perpT1[9] = { 6.0f, 6.05f, 6.1f, 6.2f, 6.3f, 6.4f, 6.5f, 6.6f, 9.7f }; static const float perpT2[9] = { 2.0f, 2.1f, 2.2f, 2.3f, 2.4f, 3.0f, 3.3f, 3.6f, 9.5f }; static const float perpT3[9] = { 1.1f, 0.7f, -0.2f, 0.0f, 0.6f, 1.3f, 2.2f, 3.6f, 9.0f }; static const float perpT4[9] = { 2.0f, 2.1f, 1.2f, 1.5f, 1.7f, 1.9f, 2.7f, 3.8f, 9.0f }; static const float heightT1[9] = { 0.0f, 0.2f, 0.5f, 0.8f, 0.9f, 0.85f, 0.6f, 0.2f, 0.0 }; static const float heightT2[9] = { -0.8f, -0.4f, 0.0f, 0.1f, 0.1f, 0.03f, 0.0f, 0.0f, 0.0 }; static const float heightT3[9] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0 }; for (size_t t = 0; t < 9; ++t) { float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT1[t]+outmost), pos.Y+sign*perp.Y*(perpT1[t]+outmost)); point[t].m_BasePosition = CVector3D(pos.X+sign*perp.X*(perpT1[t]+outmost), baseHeight + heightT1[t]*sideNess + std::max(m_WaterHeight,terrHeight), pos.Y+sign*perp.Y*(perpT1[t]+outmost)); } for (size_t t = 0; t < 9; ++t) { float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT2[t]+outmost), pos.Y+sign*perp.Y*(perpT2[t]+outmost)); point[t].m_ApexPosition = CVector3D(pos.X+sign*perp.X*(perpT2[t]+outmost), baseHeight + heightT1[t]*sideNess + std::max(m_WaterHeight,terrHeight), pos.Y+sign*perp.Y*(perpT2[t]+outmost)); } for (size_t t = 0; t < 9; ++t) { float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT3[t]+outmost*sideNess), pos.Y+sign*perp.Y*(perpT3[t]+outmost*sideNess)); point[t].m_SplashPosition = CVector3D(pos.X+sign*perp.X*(perpT3[t]+outmost*sideNess), baseHeight + heightT2[t]*sideNess + std::max(m_WaterHeight,terrHeight), pos.Y+sign*perp.Y*(perpT3[t]+outmost*sideNess)); } for (size_t t = 0; t < 9; ++t) { float terrHeight = 0.05f + terrain->GetExactGroundLevel(pos.X+sign*perp.X*(perpT4[t]+outmost), pos.Y+sign*perp.Y*(perpT4[t]+outmost)); point[t].m_RetreatPosition = CVector3D(pos.X+sign*perp.X*(perpT4[t]+outmost), baseHeight + heightT3[t]*sideNess + std::max(m_WaterHeight,terrHeight), pos.Y+sign*perp.Y*(perpT4[t]+outmost)); } vertices.push_back(point[8]); vertices.push_back(point[7]); vertices.push_back(point[6]); vertices.push_back(point[5]); vertices.push_back(point[4]); vertices.push_back(point[3]); vertices.push_back(point[2]); vertices.push_back(point[1]); vertices.push_back(point[0]); shoreWave->m_AABB += point[8].m_SplashPosition; shoreWave->m_AABB += point[8].m_BasePosition; shoreWave->m_AABB += point[0].m_SplashPosition; shoreWave->m_AABB += point[0].m_BasePosition; shoreWave->m_AABB += point[4].m_ApexPosition; } if (sign == 1) { // Let's do some fancy reversing. std::vector reversed; reversed.reserve(vertices.size()); for (int a = width-1; a >= 0; --a) { for (size_t t = 0; t < 9; ++t) reversed.push_back(vertices[a*9+t]); } vertices = reversed; } j += width/2-1; shoreWave->m_VBvertices = g_VBMan.Allocate(sizeof(SWavesVertex), vertices.size(), GL_STATIC_DRAW, GL_ARRAY_BUFFER); shoreWave->m_VBvertices->m_Owner->UpdateChunkVertices(shoreWave->m_VBvertices, &vertices[0]); m_ShoreWaves.push_back(shoreWave); } } } void WaterManager::RenderWaves(const CFrustum& frustrum) { OGL_SCOPED_DEBUG_GROUP("Render Waves"); #if CONFIG2_GLES -#warning Fix WaterManager::RenderWaves on GLES + UNUSED2(frustrum); + #warning Fix WaterManager::RenderWaves on GLES #else if (!m_WaterFancyEffects) return; glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_FancyEffectsFBO); GLuint attachments[1] = { GL_COLOR_ATTACHMENT0_EXT }; glDrawBuffers(1, attachments); glClearColor(0.0f,0.0f, 0.0f,0.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(str_water_waves); tech->BeginPass(); CShaderProgramPtr shader = tech->GetShader(); shader->BindTexture(str_waveTex, m_WaveTex); shader->BindTexture(str_foamTex, m_FoamTex); shader->Uniform(str_time, (float)m_WaterTexTimer); shader->Uniform(str_transform, g_Renderer.GetSceneRenderer().GetViewCamera().GetViewProjection()); for (size_t a = 0; a < m_ShoreWaves.size(); ++a) { if (!frustrum.IsBoxVisible(m_ShoreWaves[a]->m_AABB)) continue; CVertexBuffer::VBChunk* VBchunk = m_ShoreWaves[a]->m_VBvertices; SWavesVertex* base = (SWavesVertex*)VBchunk->m_Owner->Bind(); // setup data pointers GLsizei stride = sizeof(SWavesVertex); shader->VertexPointer(3, GL_FLOAT, stride, &base[VBchunk->m_Index].m_BasePosition); shader->TexCoordPointer(GL_TEXTURE0, 2, GL_UNSIGNED_BYTE, stride, &base[VBchunk->m_Index].m_UV); // NormalPointer(gl_FLOAT, stride, &base[m_VBWater->m_Index].m_UV) glVertexAttribPointerARB(2, 2, GL_FLOAT, GL_FALSE, stride, &base[VBchunk->m_Index].m_PerpVect); // replaces commented above because my normal is vec2 shader->VertexAttribPointer(str_a_apexPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_ApexPosition); shader->VertexAttribPointer(str_a_splashPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_SplashPosition); shader->VertexAttribPointer(str_a_retreatPosition, 3, GL_FLOAT, false, stride, &base[VBchunk->m_Index].m_RetreatPosition); shader->AssertPointersBound(); shader->Uniform(str_translation, m_ShoreWaves[a]->m_TimeDiff); shader->Uniform(str_width, (int)m_ShoreWaves[a]->m_Width); u8* indexBase = m_ShoreWaves_VBIndices->m_Owner->Bind(); glDrawElements(GL_TRIANGLES, (GLsizei) (m_ShoreWaves[a]->m_Width-1)*(7*6), GL_UNSIGNED_SHORT, indexBase + sizeof(u16)*(m_ShoreWaves_VBIndices->m_Index)); shader->Uniform(str_translation, m_ShoreWaves[a]->m_TimeDiff + 6.0f); // TODO: figure out why this doesn't work. //g_Renderer.m_Stats.m_DrawCalls++; //g_Renderer.m_Stats.m_WaterTris += m_ShoreWaves_VBIndices->m_Count / 3; CVertexBuffer::Unbind(); } tech->EndPass(); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); #endif } void WaterManager::RecomputeWaterData() { if (!m_MapSize) return; RecomputeDistanceHeightmap(); RecomputeWindStrength(); CreateWaveMeshes(); } /////////////////////////////////////////////////////////////////// // Calculate the strength of the wind at a given point on the map. void WaterManager::RecomputeWindStrength() { if (m_MapSize <= 0) return; if (m_WindStrength == nullptr) m_WindStrength = new float[m_MapSize*m_MapSize]; CTerrain* terrain = g_Game->GetWorld()->GetTerrain(); if (!terrain || !terrain->GetHeightMap()) return; CVector2D windDir = CVector2D(cos(m_WindAngle), sin(m_WindAngle)); int stepSize = 10; ssize_t windX = -round(stepSize * windDir.X); ssize_t windY = -round(stepSize * windDir.Y); struct SWindPoint { SWindPoint(size_t x, size_t y, float strength) : X(x), Y(y), windStrength(strength) {} ssize_t X; ssize_t Y; float windStrength; }; std::vector startingPoints; std::vector> movement; // Every increment, move each starting point by all of these. // Compute starting points (one or two edges of the map) and how much to move each computation increment. if (fabs(windDir.X) < 0.01f) { movement.emplace_back(0, windY > 0.f ? 1 : -1); startingPoints.reserve(m_MapSize); size_t start = windY > 0 ? 0 : m_MapSize - 1; for (size_t x = 0; x < m_MapSize; ++x) startingPoints.emplace_back(x, start, 0.f); } else if (fabs(windDir.Y) < 0.01f) { movement.emplace_back(windX > 0.f ? 1 : - 1, 0); startingPoints.reserve(m_MapSize); size_t start = windX > 0 ? 0 : m_MapSize - 1; for (size_t z = 0; z < m_MapSize; ++z) startingPoints.emplace_back(start, z, 0.f); } else { startingPoints.reserve(m_MapSize * 2); // Points along X. size_t start = windY > 0 ? 0 : m_MapSize - 1; for (size_t x = 0; x < m_MapSize; ++x) startingPoints.emplace_back(x, start, 0.f); // Points along Z, avoid repeating the corner point. start = windX > 0 ? 0 : m_MapSize - 1; if (windY > 0) for (size_t z = 1; z < m_MapSize; ++z) startingPoints.emplace_back(start, z, 0.f); else for (size_t z = 0; z < m_MapSize-1; ++z) startingPoints.emplace_back(start, z, 0.f); // Compute movement array. movement.reserve(std::max(std::abs(windX),std::abs(windY))); while (windX != 0 || windY != 0) { std::pair move = { windX == 0 ? 0 : windX > 0 ? +1 : -1, windY == 0 ? 0 : windY > 0 ? +1 : -1 }; windX -= move.first; windY -= move.second; movement.push_back(move); } } // We have all starting points ready, move them all until the map is covered. for (SWindPoint& point : startingPoints) { // Starting velocity is 1.0 unless in shallow water. m_WindStrength[point.Y * m_MapSize + point.X] = 1.f; float depth = m_WaterHeight - terrain->GetVertexGroundLevel(point.X, point.Y); if (depth > 0.f && depth < 2.f) m_WindStrength[point.Y * m_MapSize + point.X] = depth / 2.f; point.windStrength = m_WindStrength[point.Y * m_MapSize + point.X]; bool onMap = true; while (onMap) for (size_t step = 0; step < movement.size(); ++step) { // Move wind speed towards the mean. point.windStrength = 0.15f + point.windStrength * 0.85f; // Adjust speed based on height difference, a positive height difference slowly increases speed (simulate venturi effect) // and a lower height reduces speed (wind protection from hills/...) float heightDiff = std::max(m_WaterHeight, terrain->GetVertexGroundLevel(point.X + movement[step].first, point.Y + movement[step].second)) - std::max(m_WaterHeight, terrain->GetVertexGroundLevel(point.X, point.Y)); if (heightDiff > 0.f) point.windStrength = std::min(2.f, point.windStrength + std::min(4.f, heightDiff) / 40.f); else point.windStrength = std::max(0.f, point.windStrength + std::max(-4.f, heightDiff) / 5.f); point.X += movement[step].first; point.Y += movement[step].second; if (point.X < 0 || point.X >= static_cast(m_MapSize) || point.Y < 0 || point.Y >= static_cast(m_MapSize)) { onMap = false; break; } m_WindStrength[point.Y * m_MapSize + point.X] = point.windStrength; } } // TODO: should perhaps blur a little, or change the above code to incorporate neighboring tiles a bit. } //////////////////////////////////////////////////////////////////////// // TODO: This will always recalculate for now void WaterManager::SetMapSize(size_t size) { // TODO: Im' blindly trusting the user here. m_MapSize = size; m_NeedInfoUpdate = true; m_updatei0 = 0; m_updatei1 = size; m_updatej0 = 0; m_updatej1 = size; SAFE_ARRAY_DELETE(m_DistanceHeightmap); SAFE_ARRAY_DELETE(m_BlurredNormalMap); SAFE_ARRAY_DELETE(m_WindStrength); } //////////////////////////////////////////////////////////////////////// // This will set the bools properly void WaterManager::UpdateQuality() { if (g_RenderingOptions.GetWaterEffects() != m_WaterEffects) { m_WaterEffects = g_RenderingOptions.GetWaterEffects(); m_NeedsReloading = true; } if (g_RenderingOptions.GetWaterFancyEffects() != m_WaterFancyEffects) { m_WaterFancyEffects = g_RenderingOptions.GetWaterFancyEffects(); m_NeedsReloading = true; } if (g_RenderingOptions.GetWaterRealDepth() != m_WaterRealDepth) { m_WaterRealDepth = g_RenderingOptions.GetWaterRealDepth(); m_NeedsReloading = true; } if (g_RenderingOptions.GetWaterRefraction() != m_WaterRefraction) { m_WaterRefraction = g_RenderingOptions.GetWaterRefraction(); m_NeedsReloading = true; } if (g_RenderingOptions.GetWaterReflection() != m_WaterReflection) { m_WaterReflection = g_RenderingOptions.GetWaterReflection(); m_NeedsReloading = true; } } bool WaterManager::WillRenderFancyWater() const { return m_RenderWater && g_VideoMode.GetBackend() != CVideoMode::Backend::GL_ARB && g_RenderingOptions.GetWaterEffects() && g_Renderer.GetCapabilities().m_PrettyWater; } size_t WaterManager::GetCurrentTextureIndex(const double& period) const { ENSURE(period > 0.0); return static_cast(m_WaterTexTimer * ARRAY_SIZE(m_WaterTexture) / period) % ARRAY_SIZE(m_WaterTexture); } size_t WaterManager::GetNextTextureIndex(const double& period) const { ENSURE(period > 0.0); return (GetCurrentTextureIndex(period) + 1) % ARRAY_SIZE(m_WaterTexture); }