Index: ps/trunk/source/renderer/backend/gl/DeviceCommandContext.cpp =================================================================== --- ps/trunk/source/renderer/backend/gl/DeviceCommandContext.cpp (revision 26858) +++ ps/trunk/source/renderer/backend/gl/DeviceCommandContext.cpp (revision 26859) @@ -1,1119 +1,1119 @@ /* Copyright (C) 2022 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "DeviceCommandContext.h" #include "ps/CLogger.h" #include "renderer/backend/gl/Buffer.h" #include "renderer/backend/gl/Device.h" #include "renderer/backend/gl/Framebuffer.h" #include "renderer/backend/gl/Mapping.h" #include "renderer/backend/gl/ShaderProgram.h" #include "renderer/backend/gl/Texture.h" #include #include #include namespace Renderer { namespace Backend { namespace GL { namespace { bool operator==(const StencilOpState& lhs, const StencilOpState& rhs) { return lhs.failOp == rhs.failOp && lhs.passOp == rhs.passOp && lhs.depthFailOp == rhs.depthFailOp && lhs.compareOp == rhs.compareOp; } bool operator!=(const StencilOpState& lhs, const StencilOpState& rhs) { return !operator==(lhs, rhs); } bool operator==( const CDeviceCommandContext::Rect& lhs, const CDeviceCommandContext::Rect& rhs) { return lhs.x == rhs.x && lhs.y == rhs.y && lhs.width == rhs.width && lhs.height == rhs.height; } bool operator!=( const CDeviceCommandContext::Rect& lhs, const CDeviceCommandContext::Rect& rhs) { return !operator==(lhs, rhs); } void ApplyDepthMask(const bool depthWriteEnabled) { glDepthMask(depthWriteEnabled ? GL_TRUE : GL_FALSE); } void ApplyColorMask(const uint8_t colorWriteMask) { glColorMask( (colorWriteMask & ColorWriteMask::RED) != 0 ? GL_TRUE : GL_FALSE, (colorWriteMask & ColorWriteMask::GREEN) != 0 ? GL_TRUE : GL_FALSE, (colorWriteMask & ColorWriteMask::BLUE) != 0 ? GL_TRUE : GL_FALSE, (colorWriteMask & ColorWriteMask::ALPHA) != 0 ? GL_TRUE : GL_FALSE); } void ApplyStencilMask(const uint32_t stencilWriteMask) { glStencilMask(stencilWriteMask); } GLenum BufferTypeToGLTarget(const CBuffer::Type type) { GLenum target = GL_ARRAY_BUFFER; switch (type) { case CBuffer::Type::VERTEX: target = GL_ARRAY_BUFFER; break; case CBuffer::Type::INDEX: target = GL_ELEMENT_ARRAY_BUFFER; break; }; return target; } #if !CONFIG2_GLES bool IsDepthTexture(const Format format) { return format == Format::D16 || format == Format::D24 || format == Format::D32 || format == Format::D24_S8; } #endif // !CONFIG2_GLES -void UploadBufferRegionImpl( - const GLenum target, const uint32_t dataOffset, const uint32_t dataSize, +void UploadDynamicBufferRegionImpl( + const GLenum target, const uint32_t bufferSize, + const uint32_t dataOffset, const uint32_t dataSize, const CDeviceCommandContext::UploadBufferFunction& uploadFunction) { ENSURE(dataOffset < dataSize); + // Tell the driver that it can reallocate the whole VBO + glBufferDataARB(target, bufferSize, nullptr, GL_DYNAMIC_DRAW); + ogl_WarnIfError(); + while (true) { + // (In theory, glMapBufferRange with GL_MAP_INVALIDATE_BUFFER_BIT could be used + // here instead of glBufferData(..., NULL, ...) plus glMapBuffer(), but with + // current Intel Windows GPU drivers (as of 2015-01) it's much faster if you do + // the explicit glBufferData.) void* mappedData = glMapBufferARB(target, GL_WRITE_ONLY); if (mappedData == nullptr) { // This shouldn't happen unless we run out of virtual address space LOGERROR("glMapBuffer failed"); break; } uploadFunction(static_cast(mappedData) + dataOffset); if (glUnmapBufferARB(target) == GL_TRUE) break; // Unmap might fail on e.g. resolution switches, so just try again // and hope it will eventually succeed LOGMESSAGE("glUnmapBuffer failed, trying again...\n"); } } } // anonymous namespace // static std::unique_ptr CDeviceCommandContext::Create(CDevice* device) { std::unique_ptr deviceCommandContext(new CDeviceCommandContext(device)); deviceCommandContext->m_Framebuffer = static_cast(device->GetCurrentBackbuffer()); deviceCommandContext->ResetStates(); return deviceCommandContext; } CDeviceCommandContext::CDeviceCommandContext(CDevice* device) : m_Device(device) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); for (BindUnit& unit : m_BoundTextures) { unit.target = GL_TEXTURE_2D; unit.handle = 0; } for (size_t index = 0; index < m_VertexAttributeFormat.size(); ++index) { m_VertexAttributeFormat[index].active = false; m_VertexAttributeFormat[index].initialized = false; m_VertexAttributeFormat[index].bindingSlot = 0; } for (size_t index = 0; index < m_BoundBuffers.size(); ++index) { const CBuffer::Type type = static_cast(index); const GLenum target = BufferTypeToGLTarget(type); const GLuint handle = 0; m_BoundBuffers[index].first = target; m_BoundBuffers[index].second = handle; } } CDeviceCommandContext::~CDeviceCommandContext() = default; IDevice* CDeviceCommandContext::GetDevice() { return m_Device; } void CDeviceCommandContext::SetGraphicsPipelineState( const GraphicsPipelineStateDesc& pipelineStateDesc) { SetGraphicsPipelineStateImpl(pipelineStateDesc, false); } void CDeviceCommandContext::UploadTexture( ITexture* texture, const Format format, const void* data, const size_t dataSize, const uint32_t level, const uint32_t layer) { UploadTextureRegion(texture, format, data, dataSize, 0, 0, std::max(1u, texture->GetWidth() >> level), std::max(1u, texture->GetHeight() >> level), level, layer); } void CDeviceCommandContext::UploadTextureRegion( ITexture* destinationTexture, const Format dataFormat, const void* data, const size_t dataSize, const uint32_t xOffset, const uint32_t yOffset, const uint32_t width, const uint32_t height, const uint32_t level, const uint32_t layer) { ENSURE(destinationTexture); CTexture* texture = destinationTexture->As(); ENSURE(width > 0 && height > 0); if (texture->GetType() == CTexture::Type::TEXTURE_2D) { ENSURE(layer == 0); if (texture->GetFormat() == Format::R8G8B8A8_UNORM || texture->GetFormat() == Format::R8G8B8_UNORM || texture->GetFormat() == Format::A8_UNORM) { ENSURE(texture->GetFormat() == dataFormat); size_t bytesPerPixel = 4; GLenum pixelFormat = GL_RGBA; switch (dataFormat) { case Format::R8G8B8A8_UNORM: break; case Format::R8G8B8_UNORM: pixelFormat = GL_RGB; bytesPerPixel = 3; break; case Format::A8_UNORM: pixelFormat = GL_ALPHA; bytesPerPixel = 1; break; case Format::L8_UNORM: pixelFormat = GL_LUMINANCE; bytesPerPixel = 1; break; default: debug_warn("Unexpected format."); break; } ENSURE(dataSize == width * height * bytesPerPixel); ScopedBind scopedBind(this, GL_TEXTURE_2D, texture->GetHandle()); glTexSubImage2D(GL_TEXTURE_2D, level, xOffset, yOffset, width, height, pixelFormat, GL_UNSIGNED_BYTE, data); ogl_WarnIfError(); } else if ( texture->GetFormat() == Format::BC1_RGB_UNORM || texture->GetFormat() == Format::BC1_RGBA_UNORM || texture->GetFormat() == Format::BC2_UNORM || texture->GetFormat() == Format::BC3_UNORM) { ENSURE(xOffset == 0 && yOffset == 0); ENSURE(texture->GetFormat() == dataFormat); // TODO: add data size check. GLenum internalFormat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; switch (texture->GetFormat()) { case Format::BC1_RGBA_UNORM: internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case Format::BC2_UNORM: internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case Format::BC3_UNORM: internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; default: break; } ScopedBind scopedBind(this, GL_TEXTURE_2D, texture->GetHandle()); glCompressedTexImage2DARB(GL_TEXTURE_2D, level, internalFormat, width, height, 0, dataSize, data); ogl_WarnIfError(); } else debug_warn("Unsupported format"); } else if (texture->GetType() == CTexture::Type::TEXTURE_CUBE) { if (texture->GetFormat() == Format::R8G8B8A8_UNORM) { ENSURE(texture->GetFormat() == dataFormat); ENSURE(level == 0 && layer < 6); ENSURE(xOffset == 0 && yOffset == 0 && texture->GetWidth() == width && texture->GetHeight() == height); const size_t bpp = 4; ENSURE(dataSize == width * height * bpp); // The order of layers should be the following: // front, back, top, bottom, right, left static const GLenum targets[6] = { GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z }; ScopedBind scopedBind(this, GL_TEXTURE_CUBE_MAP, texture->GetHandle()); glTexImage2D(targets[layer], level, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); ogl_WarnIfError(); } else debug_warn("Unsupported format"); } else debug_warn("Unsupported type"); } void CDeviceCommandContext::UploadBuffer(IBuffer* buffer, const void* data, const uint32_t dataSize) { UploadBufferRegion(buffer, data, dataSize, 0); } void CDeviceCommandContext::UploadBuffer( IBuffer* buffer, const UploadBufferFunction& uploadFunction) { UploadBufferRegion(buffer, 0, buffer->GetSize(), uploadFunction); } void CDeviceCommandContext::UploadBufferRegion( IBuffer* buffer, const void* data, const uint32_t dataOffset, const uint32_t dataSize) { ENSURE(data); ENSURE(dataOffset + dataSize <= buffer->GetSize()); const GLenum target = BufferTypeToGLTarget(buffer->GetType()); ScopedBufferBind scopedBufferBind(this, buffer->As()); if (buffer->IsDynamic()) { - // Tell the driver that it can reallocate the whole VBO - glBufferDataARB(target, buffer->GetSize(), nullptr, buffer->IsDynamic() ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW); - ogl_WarnIfError(); - - // (In theory, glMapBufferRange with GL_MAP_INVALIDATE_BUFFER_BIT could be used - // here instead of glBufferData(..., NULL, ...) plus glMapBuffer(), but with - // current Intel Windows GPU drivers (as of 2015-01) it's much faster if you do - // the explicit glBufferData.) - - UploadBufferRegion(buffer, dataOffset, dataSize, [data, dataSize](u8* mappedData) + UploadDynamicBufferRegionImpl(target, buffer->GetSize(), dataOffset, dataSize, [data, dataSize](u8* mappedData) { std::memcpy(mappedData, data, dataSize); }); } else { glBufferSubDataARB(target, dataOffset, dataSize, data); ogl_WarnIfError(); } } void CDeviceCommandContext::UploadBufferRegion( IBuffer* buffer, const uint32_t dataOffset, const uint32_t dataSize, const UploadBufferFunction& uploadFunction) { ENSURE(dataOffset + dataSize <= buffer->GetSize()); const GLenum target = BufferTypeToGLTarget(buffer->GetType()); ScopedBufferBind scopedBufferBind(this, buffer->As()); ENSURE(buffer->IsDynamic()); - UploadBufferRegionImpl(target, dataOffset, dataSize, uploadFunction); + UploadDynamicBufferRegionImpl(target, buffer->GetSize(), dataOffset, dataSize, uploadFunction); } void CDeviceCommandContext::BeginScopedLabel(const char* name) { if (!m_Device->GetCapabilities().debugScopedLabels) return; ++m_ScopedLabelDepth; glPushDebugGroup(GL_DEBUG_SOURCE_APPLICATION, 0x0AD, -1, name); } void CDeviceCommandContext::EndScopedLabel() { if (!m_Device->GetCapabilities().debugScopedLabels) return; ENSURE(m_ScopedLabelDepth > 0); --m_ScopedLabelDepth; glPopDebugGroup(); } void CDeviceCommandContext::BindTexture( const uint32_t unit, const GLenum target, const GLuint handle) { ENSURE(unit < m_BoundTextures.size()); #if CONFIG2_GLES ENSURE(target == GL_TEXTURE_2D || target == GL_TEXTURE_CUBE_MAP); #else ENSURE(target == GL_TEXTURE_2D || target == GL_TEXTURE_CUBE_MAP || target == GL_TEXTURE_2D_MULTISAMPLE); #endif if (m_ActiveTextureUnit != unit) { glActiveTexture(GL_TEXTURE0 + unit); m_ActiveTextureUnit = unit; } if (m_BoundTextures[unit].target == target && m_BoundTextures[unit].handle == handle) return; if (m_BoundTextures[unit].target != target && m_BoundTextures[unit].target && m_BoundTextures[unit].handle) glBindTexture(m_BoundTextures[unit].target, 0); if (m_BoundTextures[unit].handle != handle) glBindTexture(target, handle); ogl_WarnIfError(); m_BoundTextures[unit] = {target, handle}; } void CDeviceCommandContext::BindBuffer(const IBuffer::Type type, CBuffer* buffer) { ENSURE(!buffer || buffer->GetType() == type); if (type == IBuffer::Type::VERTEX) { if (m_VertexBuffer == buffer) return; m_VertexBuffer = buffer; } else if (type == IBuffer::Type::INDEX) { if (!buffer) m_IndexBuffer = nullptr; m_IndexBufferData = nullptr; } const GLenum target = BufferTypeToGLTarget(type); const GLuint handle = buffer ? buffer->GetHandle() : 0; glBindBufferARB(target, handle); ogl_WarnIfError(); const size_t cacheIndex = static_cast(type); ENSURE(cacheIndex < m_BoundBuffers.size()); m_BoundBuffers[cacheIndex].second = handle; } void CDeviceCommandContext::OnTextureDestroy(CTexture* texture) { ENSURE(texture); for (size_t index = 0; index < m_BoundTextures.size(); ++index) if (m_BoundTextures[index].handle == texture->GetHandle()) BindTexture(index, GL_TEXTURE_2D, 0); } void CDeviceCommandContext::Flush() { ENSURE(m_ScopedLabelDepth == 0); GPU_SCOPED_LABEL(this, "CDeviceCommandContext::Flush"); ResetStates(); m_IndexBuffer = nullptr; m_IndexBufferData = nullptr; for (size_t unit = 0; unit < m_BoundTextures.size(); ++unit) { if (m_BoundTextures[unit].handle) BindTexture(unit, GL_TEXTURE_2D, 0); } BindBuffer(CBuffer::Type::INDEX, nullptr); BindBuffer(CBuffer::Type::VERTEX, nullptr); } void CDeviceCommandContext::ResetStates() { SetGraphicsPipelineStateImpl(MakeDefaultGraphicsPipelineStateDesc(), true); SetScissors(0, nullptr); SetFramebuffer(m_Device->GetCurrentBackbuffer()); } void CDeviceCommandContext::SetGraphicsPipelineStateImpl( const GraphicsPipelineStateDesc& pipelineStateDesc, const bool force) { ENSURE(!m_InsidePass); if (m_GraphicsPipelineStateDesc.shaderProgram != pipelineStateDesc.shaderProgram) { CShaderProgram* currentShaderProgram = nullptr; if (m_GraphicsPipelineStateDesc.shaderProgram) { currentShaderProgram = static_cast(m_GraphicsPipelineStateDesc.shaderProgram); } CShaderProgram* nextShaderProgram = nullptr; if (pipelineStateDesc.shaderProgram) { nextShaderProgram = static_cast(pipelineStateDesc.shaderProgram); for (size_t index = 0; index < m_VertexAttributeFormat.size(); ++index) { const VertexAttributeStream stream = static_cast(index); m_VertexAttributeFormat[index].active = nextShaderProgram->IsStreamActive(stream); m_VertexAttributeFormat[index].initialized = false; m_VertexAttributeFormat[index].bindingSlot = std::numeric_limits::max(); } } if (nextShaderProgram) nextShaderProgram->Bind(currentShaderProgram); else if (currentShaderProgram) currentShaderProgram->Unbind(); m_ShaderProgram = nextShaderProgram; } const DepthStencilStateDesc& currentDepthStencilStateDesc = m_GraphicsPipelineStateDesc.depthStencilState; const DepthStencilStateDesc& nextDepthStencilStateDesc = pipelineStateDesc.depthStencilState; if (force || currentDepthStencilStateDesc.depthTestEnabled != nextDepthStencilStateDesc.depthTestEnabled) { if (nextDepthStencilStateDesc.depthTestEnabled) glEnable(GL_DEPTH_TEST); else glDisable(GL_DEPTH_TEST); } if (force || currentDepthStencilStateDesc.depthCompareOp != nextDepthStencilStateDesc.depthCompareOp) { glDepthFunc(Mapping::FromCompareOp(nextDepthStencilStateDesc.depthCompareOp)); } if (force || currentDepthStencilStateDesc.depthWriteEnabled != nextDepthStencilStateDesc.depthWriteEnabled) { ApplyDepthMask(nextDepthStencilStateDesc.depthWriteEnabled); } if (force || currentDepthStencilStateDesc.stencilTestEnabled != nextDepthStencilStateDesc.stencilTestEnabled) { if (nextDepthStencilStateDesc.stencilTestEnabled) glEnable(GL_STENCIL_TEST); else glDisable(GL_STENCIL_TEST); } if (force || currentDepthStencilStateDesc.stencilFrontFace != nextDepthStencilStateDesc.stencilFrontFace || currentDepthStencilStateDesc.stencilBackFace != nextDepthStencilStateDesc.stencilBackFace) { if (nextDepthStencilStateDesc.stencilFrontFace == nextDepthStencilStateDesc.stencilBackFace) { glStencilOp( Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.failOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.depthFailOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.passOp)); } else { if (force || currentDepthStencilStateDesc.stencilFrontFace != nextDepthStencilStateDesc.stencilFrontFace) { glStencilOpSeparate( GL_FRONT, Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.failOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.depthFailOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilFrontFace.passOp)); } if (force || currentDepthStencilStateDesc.stencilBackFace != nextDepthStencilStateDesc.stencilBackFace) { glStencilOpSeparate( GL_BACK, Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilBackFace.failOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilBackFace.depthFailOp), Mapping::FromStencilOp(nextDepthStencilStateDesc.stencilBackFace.passOp)); } } } if (force || currentDepthStencilStateDesc.stencilWriteMask != nextDepthStencilStateDesc.stencilWriteMask) { ApplyStencilMask(nextDepthStencilStateDesc.stencilWriteMask); } if (force || currentDepthStencilStateDesc.stencilReference != nextDepthStencilStateDesc.stencilReference || currentDepthStencilStateDesc.stencilReadMask != nextDepthStencilStateDesc.stencilReadMask || currentDepthStencilStateDesc.stencilFrontFace.compareOp != nextDepthStencilStateDesc.stencilFrontFace.compareOp || currentDepthStencilStateDesc.stencilBackFace.compareOp != nextDepthStencilStateDesc.stencilBackFace.compareOp) { if (nextDepthStencilStateDesc.stencilFrontFace.compareOp == nextDepthStencilStateDesc.stencilBackFace.compareOp) { glStencilFunc( Mapping::FromCompareOp(nextDepthStencilStateDesc.stencilFrontFace.compareOp), nextDepthStencilStateDesc.stencilReference, nextDepthStencilStateDesc.stencilReadMask); } else { glStencilFuncSeparate(GL_FRONT, Mapping::FromCompareOp(nextDepthStencilStateDesc.stencilFrontFace.compareOp), nextDepthStencilStateDesc.stencilReference, nextDepthStencilStateDesc.stencilReadMask); glStencilFuncSeparate(GL_BACK, Mapping::FromCompareOp(nextDepthStencilStateDesc.stencilBackFace.compareOp), nextDepthStencilStateDesc.stencilReference, nextDepthStencilStateDesc.stencilReadMask); } } const BlendStateDesc& currentBlendStateDesc = m_GraphicsPipelineStateDesc.blendState; const BlendStateDesc& nextBlendStateDesc = pipelineStateDesc.blendState; if (force || currentBlendStateDesc.enabled != nextBlendStateDesc.enabled) { if (nextBlendStateDesc.enabled) glEnable(GL_BLEND); else glDisable(GL_BLEND); } if (force || currentBlendStateDesc.srcColorBlendFactor != nextBlendStateDesc.srcColorBlendFactor || currentBlendStateDesc.srcAlphaBlendFactor != nextBlendStateDesc.srcAlphaBlendFactor || currentBlendStateDesc.dstColorBlendFactor != nextBlendStateDesc.dstColorBlendFactor || currentBlendStateDesc.dstAlphaBlendFactor != nextBlendStateDesc.dstAlphaBlendFactor) { if (nextBlendStateDesc.srcColorBlendFactor == nextBlendStateDesc.srcAlphaBlendFactor && nextBlendStateDesc.dstColorBlendFactor == nextBlendStateDesc.dstAlphaBlendFactor) { glBlendFunc( Mapping::FromBlendFactor(nextBlendStateDesc.srcColorBlendFactor), Mapping::FromBlendFactor(nextBlendStateDesc.dstColorBlendFactor)); } else { glBlendFuncSeparate( Mapping::FromBlendFactor(nextBlendStateDesc.srcColorBlendFactor), Mapping::FromBlendFactor(nextBlendStateDesc.dstColorBlendFactor), Mapping::FromBlendFactor(nextBlendStateDesc.srcAlphaBlendFactor), Mapping::FromBlendFactor(nextBlendStateDesc.dstAlphaBlendFactor)); } } if (force || currentBlendStateDesc.colorBlendOp != nextBlendStateDesc.colorBlendOp || currentBlendStateDesc.alphaBlendOp != nextBlendStateDesc.alphaBlendOp) { if (nextBlendStateDesc.colorBlendOp == nextBlendStateDesc.alphaBlendOp) { glBlendEquation(Mapping::FromBlendOp(nextBlendStateDesc.colorBlendOp)); } else { glBlendEquationSeparate( Mapping::FromBlendOp(nextBlendStateDesc.colorBlendOp), Mapping::FromBlendOp(nextBlendStateDesc.alphaBlendOp)); } } if (force || currentBlendStateDesc.constant != nextBlendStateDesc.constant) { glBlendColor( nextBlendStateDesc.constant.r, nextBlendStateDesc.constant.g, nextBlendStateDesc.constant.b, nextBlendStateDesc.constant.a); } if (force || currentBlendStateDesc.colorWriteMask != nextBlendStateDesc.colorWriteMask) { ApplyColorMask(nextBlendStateDesc.colorWriteMask); } const RasterizationStateDesc& currentRasterizationStateDesc = m_GraphicsPipelineStateDesc.rasterizationState; const RasterizationStateDesc& nextRasterizationStateDesc = pipelineStateDesc.rasterizationState; if (force || currentRasterizationStateDesc.polygonMode != nextRasterizationStateDesc.polygonMode) { #if !CONFIG2_GLES glPolygonMode( GL_FRONT_AND_BACK, nextRasterizationStateDesc.polygonMode == PolygonMode::LINE ? GL_LINE : GL_FILL); #endif } if (force || currentRasterizationStateDesc.cullMode != nextRasterizationStateDesc.cullMode) { if (nextRasterizationStateDesc.cullMode == CullMode::NONE) { glDisable(GL_CULL_FACE); } else { if (force || currentRasterizationStateDesc.cullMode == CullMode::NONE) glEnable(GL_CULL_FACE); glCullFace(nextRasterizationStateDesc.cullMode == CullMode::FRONT ? GL_FRONT : GL_BACK); } } if (force || currentRasterizationStateDesc.frontFace != nextRasterizationStateDesc.frontFace) { if (nextRasterizationStateDesc.frontFace == FrontFace::CLOCKWISE) glFrontFace(GL_CW); else glFrontFace(GL_CCW); } #if !CONFIG2_GLES if (force || currentRasterizationStateDesc.depthBiasEnabled != nextRasterizationStateDesc.depthBiasEnabled) { if (nextRasterizationStateDesc.depthBiasEnabled) glEnable(GL_POLYGON_OFFSET_FILL); else glDisable(GL_POLYGON_OFFSET_FILL); } if (force || currentRasterizationStateDesc.depthBiasConstantFactor != nextRasterizationStateDesc.depthBiasConstantFactor || currentRasterizationStateDesc.depthBiasSlopeFactor != nextRasterizationStateDesc.depthBiasSlopeFactor) { glPolygonOffset( nextRasterizationStateDesc.depthBiasSlopeFactor, nextRasterizationStateDesc.depthBiasConstantFactor); } #endif ogl_WarnIfError(); m_GraphicsPipelineStateDesc = pipelineStateDesc; } void CDeviceCommandContext::BlitFramebuffer( IFramebuffer* dstFramebuffer, IFramebuffer* srcFramebuffer) { CFramebuffer* destinationFramebuffer = dstFramebuffer->As(); CFramebuffer* sourceFramebuffer = srcFramebuffer->As(); #if CONFIG2_GLES UNUSED2(destinationFramebuffer); UNUSED2(sourceFramebuffer); debug_warn("CDeviceCommandContext::BlitFramebuffer is not implemented for GLES"); #else // Source framebuffer should not be backbuffer. ENSURE(sourceFramebuffer->GetHandle() != 0); ENSURE(destinationFramebuffer != sourceFramebuffer); glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, sourceFramebuffer->GetHandle()); glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, destinationFramebuffer->GetHandle()); // TODO: add more check for internal formats. And currently we don't support // scaling inside blit. glBlitFramebufferEXT( 0, 0, sourceFramebuffer->GetWidth(), sourceFramebuffer->GetHeight(), 0, 0, sourceFramebuffer->GetWidth(), sourceFramebuffer->GetHeight(), (sourceFramebuffer->GetAttachmentMask() & destinationFramebuffer->GetAttachmentMask()), GL_NEAREST); ogl_WarnIfError(); #endif } void CDeviceCommandContext::ClearFramebuffer() { ClearFramebuffer(true, true, true); } void CDeviceCommandContext::ClearFramebuffer(const bool color, const bool depth, const bool stencil) { const bool needsColor = color && (m_Framebuffer->GetAttachmentMask() & GL_COLOR_BUFFER_BIT) != 0; const bool needsDepth = depth && (m_Framebuffer->GetAttachmentMask() & GL_DEPTH_BUFFER_BIT) != 0; const bool needsStencil = stencil && (m_Framebuffer->GetAttachmentMask() & GL_STENCIL_BUFFER_BIT) != 0; GLbitfield mask = 0; if (needsColor) { ApplyColorMask(ColorWriteMask::RED | ColorWriteMask::GREEN | ColorWriteMask::BLUE | ColorWriteMask::ALPHA); glClearColor( m_Framebuffer->GetClearColor().r, m_Framebuffer->GetClearColor().g, m_Framebuffer->GetClearColor().b, m_Framebuffer->GetClearColor().a); mask |= GL_COLOR_BUFFER_BIT; } if (needsDepth) { ApplyDepthMask(true); mask |= GL_DEPTH_BUFFER_BIT; } if (needsStencil) { ApplyStencilMask(std::numeric_limits::max()); mask |= GL_STENCIL_BUFFER_BIT; } glClear(mask); ogl_WarnIfError(); if (needsColor) ApplyColorMask(m_GraphicsPipelineStateDesc.blendState.colorWriteMask); if (needsDepth) ApplyDepthMask(m_GraphicsPipelineStateDesc.depthStencilState.depthWriteEnabled); if (needsStencil) ApplyStencilMask(m_GraphicsPipelineStateDesc.depthStencilState.stencilWriteMask); } void CDeviceCommandContext::SetFramebuffer(IFramebuffer* framebuffer) { ENSURE(framebuffer); m_Framebuffer = framebuffer->As(); ENSURE(m_Framebuffer->GetHandle() == 0 || (m_Framebuffer->GetWidth() > 0 && m_Framebuffer->GetHeight() > 0)); glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_Framebuffer->GetHandle()); ogl_WarnIfError(); } void CDeviceCommandContext::ReadbackFramebufferSync( const uint32_t x, const uint32_t y, const uint32_t width, const uint32_t height, void* data) { ENSURE(m_Framebuffer); glReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, data); ogl_WarnIfError(); } void CDeviceCommandContext::SetScissors(const uint32_t scissorCount, const Rect* scissors) { ENSURE(scissorCount <= 1); if (scissorCount == 0) { if (m_ScissorCount != scissorCount) glDisable(GL_SCISSOR_TEST); } else { if (m_ScissorCount != scissorCount) glEnable(GL_SCISSOR_TEST); ENSURE(scissors); if (m_ScissorCount != scissorCount || m_Scissors[0] != scissors[0]) { m_Scissors[0] = scissors[0]; glScissor(m_Scissors[0].x, m_Scissors[0].y, m_Scissors[0].width, m_Scissors[0].height); } } ogl_WarnIfError(); m_ScissorCount = scissorCount; } void CDeviceCommandContext::SetViewports(const uint32_t viewportCount, const Rect* viewports) { ENSURE(viewportCount == 1); glViewport(viewports[0].x, viewports[0].y, viewports[0].width, viewports[0].height); ogl_WarnIfError(); } void CDeviceCommandContext::SetVertexAttributeFormat( const VertexAttributeStream stream, const Format format, const uint32_t offset, const uint32_t stride, const uint32_t bindingSlot) { const uint32_t index = static_cast(stream); ENSURE(index < m_VertexAttributeFormat.size()); ENSURE(bindingSlot < m_VertexAttributeFormat.size()); if (!m_VertexAttributeFormat[index].active) return; m_VertexAttributeFormat[index].format = format; m_VertexAttributeFormat[index].offset = offset; m_VertexAttributeFormat[index].stride = stride; m_VertexAttributeFormat[index].bindingSlot = bindingSlot; m_VertexAttributeFormat[index].initialized = true; } void CDeviceCommandContext::SetVertexBuffer( const uint32_t bindingSlot, IBuffer* buffer) { ENSURE(buffer); ENSURE(buffer->GetType() == IBuffer::Type::VERTEX); ENSURE(m_ShaderProgram); BindBuffer(buffer->GetType(), buffer->As()); for (size_t index = 0; index < m_VertexAttributeFormat.size(); ++index) { if (!m_VertexAttributeFormat[index].active || m_VertexAttributeFormat[index].bindingSlot != bindingSlot) continue; ENSURE(m_VertexAttributeFormat[index].initialized); const VertexAttributeStream stream = static_cast(index); m_ShaderProgram->VertexAttribPointer(stream, m_VertexAttributeFormat[index].format, m_VertexAttributeFormat[index].offset, m_VertexAttributeFormat[index].stride, nullptr); } } void CDeviceCommandContext::SetVertexBufferData( const uint32_t bindingSlot, const void* data) { ENSURE(data); ENSURE(m_ShaderProgram); BindBuffer(CBuffer::Type::VERTEX, nullptr); for (size_t index = 0; index < m_VertexAttributeFormat.size(); ++index) { if (!m_VertexAttributeFormat[index].active || m_VertexAttributeFormat[index].bindingSlot != bindingSlot) continue; ENSURE(m_VertexAttributeFormat[index].initialized); const VertexAttributeStream stream = static_cast(index); m_ShaderProgram->VertexAttribPointer(stream, m_VertexAttributeFormat[index].format, m_VertexAttributeFormat[index].offset, m_VertexAttributeFormat[index].stride, data); } } void CDeviceCommandContext::SetIndexBuffer(IBuffer* buffer) { ENSURE(buffer->GetType() == CBuffer::Type::INDEX); m_IndexBuffer = buffer->As(); m_IndexBufferData = nullptr; BindBuffer(CBuffer::Type::INDEX, m_IndexBuffer); } void CDeviceCommandContext::SetIndexBufferData(const void* data) { if (m_IndexBuffer) { BindBuffer(CBuffer::Type::INDEX, nullptr); m_IndexBuffer = nullptr; } m_IndexBufferData = data; } void CDeviceCommandContext::BeginPass() { ENSURE(!m_InsidePass); m_InsidePass = true; } void CDeviceCommandContext::EndPass() { ENSURE(m_InsidePass); m_InsidePass = false; } void CDeviceCommandContext::Draw( const uint32_t firstVertex, const uint32_t vertexCount) { ENSURE(m_ShaderProgram); ENSURE(m_InsidePass); // Some drivers apparently don't like count = 0 in glDrawArrays here, so skip // all drawing in that case. if (vertexCount == 0) return; m_ShaderProgram->AssertPointersBound(); glDrawArrays(GL_TRIANGLES, firstVertex, vertexCount); ogl_WarnIfError(); } void CDeviceCommandContext::DrawIndexed( const uint32_t firstIndex, const uint32_t indexCount, const int32_t vertexOffset) { ENSURE(m_ShaderProgram); ENSURE(m_InsidePass); if (indexCount == 0) return; ENSURE(m_IndexBuffer || m_IndexBufferData); ENSURE(vertexOffset == 0); if (m_IndexBuffer) { ENSURE(sizeof(uint16_t) * (firstIndex + indexCount) <= m_IndexBuffer->GetSize()); } m_ShaderProgram->AssertPointersBound(); // Don't use glMultiDrawElements here since it doesn't have a significant // performance impact and it suffers from various driver bugs (e.g. it breaks // in Mesa 7.10 swrast with index VBOs). glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, static_cast((static_cast(m_IndexBufferData) + sizeof(uint16_t) * firstIndex))); ogl_WarnIfError(); } void CDeviceCommandContext::DrawIndexedInRange( const uint32_t firstIndex, const uint32_t indexCount, const uint32_t start, const uint32_t end) { ENSURE(m_ShaderProgram); ENSURE(m_InsidePass); if (indexCount == 0) return; ENSURE(m_IndexBuffer || m_IndexBufferData); const void* indices = static_cast((static_cast(m_IndexBufferData) + sizeof(uint16_t) * firstIndex)); m_ShaderProgram->AssertPointersBound(); // Draw with DrawRangeElements where available, since it might be more // efficient for slow hardware. #if CONFIG2_GLES UNUSED2(start); UNUSED2(end); glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_SHORT, indices); #else glDrawRangeElementsEXT(GL_TRIANGLES, start, end, indexCount, GL_UNSIGNED_SHORT, indices); #endif ogl_WarnIfError(); } void CDeviceCommandContext::SetTexture(const int32_t bindingSlot, ITexture* texture) { ENSURE(m_ShaderProgram); ENSURE(texture); const CShaderProgram::TextureUnit textureUnit = m_ShaderProgram->GetTextureUnit(bindingSlot); if (!textureUnit.type) return; if (textureUnit.type != GL_SAMPLER_2D && #if !CONFIG2_GLES textureUnit.type != GL_SAMPLER_2D_SHADOW && #endif textureUnit.type != GL_SAMPLER_CUBE) { LOGERROR("CDeviceCommandContext::SetTexture: expected sampler at binding slot"); return; } #if !CONFIG2_GLES if (textureUnit.type == GL_SAMPLER_2D_SHADOW) { if (!IsDepthTexture(texture->GetFormat())) { LOGERROR("CDeviceCommandContext::SetTexture: Invalid texture type (expected depth texture)"); return; } } #endif ENSURE(textureUnit.unit >= 0); const uint32_t unit = textureUnit.unit; if (unit >= m_BoundTextures.size()) { LOGERROR("CDeviceCommandContext::SetTexture: Invalid texture unit (too big)"); return; } BindTexture(unit, textureUnit.target, texture->As()->GetHandle()); } void CDeviceCommandContext::SetUniform( const int32_t bindingSlot, const float value) { ENSURE(m_ShaderProgram); m_ShaderProgram->SetUniform(bindingSlot, value); } void CDeviceCommandContext::SetUniform( const int32_t bindingSlot, const float valueX, const float valueY) { ENSURE(m_ShaderProgram); m_ShaderProgram->SetUniform(bindingSlot, valueX, valueY); } void CDeviceCommandContext::SetUniform( const int32_t bindingSlot, const float valueX, const float valueY, const float valueZ) { ENSURE(m_ShaderProgram); m_ShaderProgram->SetUniform(bindingSlot, valueX, valueY, valueZ); } void CDeviceCommandContext::SetUniform( const int32_t bindingSlot, const float valueX, const float valueY, const float valueZ, const float valueW) { ENSURE(m_ShaderProgram); m_ShaderProgram->SetUniform(bindingSlot, valueX, valueY, valueZ, valueW); } void CDeviceCommandContext::SetUniform( const int32_t bindingSlot, PS::span values) { ENSURE(m_ShaderProgram); m_ShaderProgram->SetUniform(bindingSlot, values); } CDeviceCommandContext::ScopedBind::ScopedBind( CDeviceCommandContext* deviceCommandContext, const GLenum target, const GLuint handle) : m_DeviceCommandContext(deviceCommandContext), m_OldBindUnit(deviceCommandContext->m_BoundTextures[deviceCommandContext->m_ActiveTextureUnit]), m_ActiveTextureUnit(deviceCommandContext->m_ActiveTextureUnit) { const uint32_t unit = m_DeviceCommandContext->m_BoundTextures.size() - 1; m_DeviceCommandContext->BindTexture(unit, target, handle); } CDeviceCommandContext::ScopedBind::~ScopedBind() { m_DeviceCommandContext->BindTexture( m_ActiveTextureUnit, m_OldBindUnit.target, m_OldBindUnit.handle); } CDeviceCommandContext::ScopedBufferBind::ScopedBufferBind( CDeviceCommandContext* deviceCommandContext, CBuffer* buffer) : m_DeviceCommandContext(deviceCommandContext) { ENSURE(buffer); m_CacheIndex = static_cast(buffer->GetType()); const GLenum target = BufferTypeToGLTarget(buffer->GetType()); const GLuint handle = buffer->GetHandle(); if (m_DeviceCommandContext->m_BoundBuffers[m_CacheIndex].first == target && m_DeviceCommandContext->m_BoundBuffers[m_CacheIndex].second == handle) { // Use an invalid index as a sign that we don't need to restore the // bound buffer. m_CacheIndex = m_DeviceCommandContext->m_BoundBuffers.size(); } else { glBindBufferARB(target, handle); } } CDeviceCommandContext::ScopedBufferBind::~ScopedBufferBind() { if (m_CacheIndex >= m_DeviceCommandContext->m_BoundBuffers.size()) return; glBindBufferARB( m_DeviceCommandContext->m_BoundBuffers[m_CacheIndex].first, m_DeviceCommandContext->m_BoundBuffers[m_CacheIndex].second); } } // namespace GL } // namespace Backend } // namespace Renderer