Index: ps/trunk/source/simulation2/components/CCmpTerritoryManager.cpp =================================================================== --- ps/trunk/source/simulation2/components/CCmpTerritoryManager.cpp (revision 28086) +++ ps/trunk/source/simulation2/components/CCmpTerritoryManager.cpp (revision 28087) @@ -1,872 +1,883 @@ -/* Copyright (C) 2023 Wildfire Games. +/* Copyright (C) 2024 Wildfire Games. * This file is part of 0 A.D. * * 0 A.D. is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * 0 A.D. is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with 0 A.D. If not, see . */ #include "precompiled.h" #include "simulation2/system/Component.h" #include "ICmpTerritoryManager.h" #include "graphics/Overlay.h" #include "graphics/Terrain.h" #include "graphics/TextureManager.h" #include "graphics/TerritoryBoundary.h" #include "maths/MathUtil.h" #include "ps/Profile.h" #include "ps/XML/Xeromyces.h" #include "renderer/Renderer.h" #include "renderer/Scene.h" #include "renderer/TerrainOverlay.h" #include "simulation2/MessageTypes.h" #include "simulation2/components/ICmpOwnership.h" #include "simulation2/components/ICmpPathfinder.h" #include "simulation2/components/ICmpPlayer.h" #include "simulation2/components/ICmpPlayerManager.h" #include "simulation2/components/ICmpPosition.h" #include "simulation2/components/ICmpTerritoryDecayManager.h" #include "simulation2/components/ICmpTerritoryInfluence.h" #include "simulation2/helpers/Grid.h" #include "simulation2/helpers/Render.h" #include class CCmpTerritoryManager; class TerritoryOverlay final : public TerrainTextureOverlay { NONCOPYABLE(TerritoryOverlay); public: CCmpTerritoryManager& m_TerritoryManager; TerritoryOverlay(CCmpTerritoryManager& manager); void BuildTextureRGBA(u8* data, size_t w, size_t h) override; }; class CCmpTerritoryManager : public ICmpTerritoryManager { public: static void ClassInit(CComponentManager& componentManager) { componentManager.SubscribeGloballyToMessageType(MT_OwnershipChanged); componentManager.SubscribeGloballyToMessageType(MT_PlayerColorChanged); componentManager.SubscribeGloballyToMessageType(MT_PositionChanged); componentManager.SubscribeGloballyToMessageType(MT_ValueModification); componentManager.SubscribeToMessageType(MT_ObstructionMapShapeChanged); componentManager.SubscribeToMessageType(MT_TerrainChanged); componentManager.SubscribeToMessageType(MT_WaterChanged); componentManager.SubscribeToMessageType(MT_Update); componentManager.SubscribeToMessageType(MT_Interpolate); componentManager.SubscribeToMessageType(MT_RenderSubmit); } DEFAULT_COMPONENT_ALLOCATOR(TerritoryManager) static std::string GetSchema() { return ""; } u8 m_ImpassableCost; float m_BorderThickness; float m_BorderSeparation; // Player ID in bits 0-4 (TERRITORY_PLAYER_MASK) // connected flag in bit 5 (TERRITORY_CONNECTED_MASK) // blinking flag in bit 6 (TERRITORY_BLINKING_MASK) // processed flag in bit 7 (TERRITORY_PROCESSED_MASK) Grid* m_Territories; std::vector m_TerritoryCellCounts; u16 m_TerritoryTotalPassableCellCount; // Saves the cost per tile (to stop territory on impassable tiles) Grid* m_CostGrid; // Set to true when territories change; will send a TerritoriesChanged message // during the Update phase bool m_TriggerEvent; struct SBoundaryLine { bool blinking; player_id_t owner; CColor color; SOverlayTexturedLine overlay; }; std::vector m_BoundaryLines; bool m_BoundaryLinesDirty; double m_AnimTime; // time since start of rendering, in seconds TerritoryOverlay* m_DebugOverlay; bool m_EnableLineDebugOverlays; ///< Enable node debugging overlays for boundary lines? std::vector m_DebugBoundaryLineNodes; void Init(const CParamNode& UNUSED(paramNode)) override { m_Territories = NULL; m_CostGrid = NULL; m_DebugOverlay = NULL; // m_DebugOverlay = new TerritoryOverlay(*this); m_BoundaryLinesDirty = true; m_TriggerEvent = true; m_EnableLineDebugOverlays = false; m_DirtyID = 1; m_DirtyBlinkingID = 1; m_Visible = true; m_ColorChanged = false; m_AnimTime = 0.0; m_TerritoryTotalPassableCellCount = 0; // Register Relax NG validator CXeromyces::AddValidator(g_VFS, "territorymanager", "simulation/data/territorymanager.rng"); CParamNode externalParamNode; CParamNode::LoadXML(externalParamNode, L"simulation/data/territorymanager.xml", "territorymanager"); int impassableCost = externalParamNode.GetChild("TerritoryManager").GetChild("ImpassableCost").ToInt(); ENSURE(0 <= impassableCost && impassableCost <= 255); m_ImpassableCost = (u8)impassableCost; m_BorderThickness = externalParamNode.GetChild("TerritoryManager").GetChild("BorderThickness").ToFixed().ToFloat(); m_BorderSeparation = externalParamNode.GetChild("TerritoryManager").GetChild("BorderSeparation").ToFixed().ToFloat(); } void Deinit() override { SAFE_DELETE(m_Territories); SAFE_DELETE(m_CostGrid); SAFE_DELETE(m_DebugOverlay); } void Serialize(ISerializer& serialize) override { // Territory state can be recomputed as required, so we don't need to serialize any of it. serialize.Bool("trigger event", m_TriggerEvent); } void Deserialize(const CParamNode& paramNode, IDeserializer& deserialize) override { Init(paramNode); deserialize.Bool("trigger event", m_TriggerEvent); } void HandleMessage(const CMessage& msg, bool UNUSED(global)) override { switch (msg.GetType()) { case MT_OwnershipChanged: { const CMessageOwnershipChanged& msgData = static_cast (msg); MakeDirtyIfRelevantEntity(msgData.entity); break; } case MT_PlayerColorChanged: { MakeDirty(); break; } case MT_PositionChanged: { const CMessagePositionChanged& msgData = static_cast (msg); MakeDirtyIfRelevantEntity(msgData.entity); break; } case MT_ValueModification: { const CMessageValueModification& msgData = static_cast (msg); if (msgData.component == L"TerritoryInfluence") MakeDirty(); break; } case MT_ObstructionMapShapeChanged: case MT_TerrainChanged: case MT_WaterChanged: { // also recalculate the cost grid to support atlas changes SAFE_DELETE(m_CostGrid); MakeDirty(); break; } case MT_Update: { if (m_TriggerEvent) { m_TriggerEvent = false; GetSimContext().GetComponentManager().BroadcastMessage(CMessageTerritoriesChanged()); } break; } case MT_Interpolate: { const CMessageInterpolate& msgData = static_cast (msg); Interpolate(msgData.deltaSimTime, msgData.offset); break; } case MT_RenderSubmit: { const CMessageRenderSubmit& msgData = static_cast (msg); RenderSubmit(msgData.collector, msgData.frustum, msgData.culling); break; } } } // Check whether the entity is either a settlement or territory influence; // ignore any others void MakeDirtyIfRelevantEntity(entity_id_t ent) { CmpPtr cmpTerritoryInfluence(GetSimContext(), ent); if (cmpTerritoryInfluence) MakeDirty(); } const Grid& GetTerritoryGrid() override { CalculateTerritories(); ENSURE(m_Territories); return *m_Territories; } player_id_t GetOwner(entity_pos_t x, entity_pos_t z) override; std::vector GetNeighbours(entity_pos_t x, entity_pos_t z, bool filterConnected) override; bool IsConnected(entity_pos_t x, entity_pos_t z) override; void SetTerritoryBlinking(entity_pos_t x, entity_pos_t z, bool enable) override; bool IsTerritoryBlinking(entity_pos_t x, entity_pos_t z) override; // To support lazy updates of territory render data, // we maintain a DirtyID here and increment it whenever territories change; // if a caller has a lower DirtyID then it needs to be updated. // We also do the same thing for blinking updates using DirtyBlinkingID. size_t m_DirtyID; size_t m_DirtyBlinkingID; bool m_ColorChanged; void MakeDirty() { SAFE_DELETE(m_Territories); ++m_DirtyID; m_BoundaryLinesDirty = true; m_TriggerEvent = true; } bool NeedUpdateTexture(size_t* dirtyID) override { if (*dirtyID == m_DirtyID && !m_ColorChanged) return false; *dirtyID = m_DirtyID; m_ColorChanged = false; return true; } bool NeedUpdateAI(size_t* dirtyID, size_t* dirtyBlinkingID) const override { if (*dirtyID == m_DirtyID && *dirtyBlinkingID == m_DirtyBlinkingID) return false; *dirtyID = m_DirtyID; *dirtyBlinkingID = m_DirtyBlinkingID; return true; } void CalculateCostGrid(); void CalculateTerritories(); u8 GetTerritoryPercentage(player_id_t player) override; std::vector ComputeBoundaries(); void UpdateBoundaryLines(); void Interpolate(float frameTime, float frameOffset); void RenderSubmit(SceneCollector& collector, const CFrustum& frustum, bool culling); void SetVisibility(bool visible) override { m_Visible = visible; } void UpdateColors() override; private: bool m_Visible; }; REGISTER_COMPONENT_TYPE(TerritoryManager) // Tile data type, for easier accessing of coordinates struct Tile { Tile(u16 i, u16 j) : x(i), z(j) { } u16 x, z; }; -// Floodfill templates that expand neighbours from a certain source onwards -// (posX, posZ) are the coordinates of the currently expanded tile -// (nx, nz) are the coordinates of the current neighbour handled -// The user of this floodfill should use "continue" on every neighbour that -// shouldn't be expanded on its own. (without continue, an infinite loop will happen) -# define FLOODFILL(i, j, code)\ - do {\ - const int NUM_NEIGHBOURS = 8;\ - const int NEIGHBOURS_X[NUM_NEIGHBOURS] = {1,-1, 0, 0, 1,-1, 1,-1};\ - const int NEIGHBOURS_Z[NUM_NEIGHBOURS] = {0, 0, 1,-1, 1,-1,-1, 1};\ - std::queue openTiles;\ - openTiles.emplace(i, j);\ - while (!openTiles.empty())\ - {\ - u16 posX = openTiles.front().x;\ - u16 posZ = openTiles.front().z;\ - openTiles.pop();\ - for (int n = 0; n < NUM_NEIGHBOURS; ++n)\ - {\ - u16 nx = posX + NEIGHBOURS_X[n];\ - u16 nz = posZ + NEIGHBOURS_Z[n];\ - /* Check the bounds, underflow will cause the values to be big again */\ - if (nx >= tilesW || nz >= tilesH)\ - continue;\ - code\ - openTiles.emplace(nx, nz);\ - }\ - }\ - }\ - while (false) +/** + * Queue based eight directional floodfill algorithm. + * + * @param origin Where to start the floodfill. In the first iteration it is + * passed as the second argument to the @see decider and the floodfill only + * continues when the invocation returns @c true. + * @param gridSize Tiles outside the boundary are never exteded. The + * @see decider isn't called with thous tiles. + * @param decider It is called with a tile wich was already added as the first + * argument and a neighbour as the second argument. The invocation shall + * return whether to extend the wavefront to the neighbour (if allways + * @c true is returned, an infinite loop will occur). In the first iteration + * the @see decider is invoked with a null pointer as the first argument and + * @see origin as the second argument. + */ +template +void Floodfill(const Tile& origin, const Tile& gridSize, Decider decider) +{ + static_assert(std::is_invocable_r_v); + + constexpr std::array, 8> neighbours{{{1, 0}, {-1, 0}, {0, 1}, {0, -1}, {1, 1}, + {-1, -1}, {1, -1}, {-1, 1}}}; + std::queue openTiles; + + const auto emplaceIfRequested = [decider = std::move(decider), &openTiles]( + const Tile* currentTile, const Tile& neighbourTile) + { + if (decider(currentTile, neighbourTile)) + openTiles.emplace(neighbourTile); + }; + + emplaceIfRequested(nullptr, origin); + while (!openTiles.empty()) + { + const Tile currentTile{openTiles.front()}; + openTiles.pop(); + for (const std::array& neighbour : neighbours) + { + const Tile neighbourTile{static_cast(currentTile.x + std::get<0>(neighbour)), + static_cast(currentTile.z + std::get<1>(neighbour))}; + + // Check the bounds, underflow will cause the values to be big again. + if (neighbourTile.x < gridSize.x && neighbourTile.z < gridSize.z) + emplaceIfRequested(¤tTile, neighbourTile); + } + } +} /** * Compute the tile indexes on the grid nearest to a given point */ static void NearestTerritoryTile(entity_pos_t x, entity_pos_t z, u16& i, u16& j, u16 w, u16 h) { entity_pos_t scale = Pathfinding::NAVCELL_SIZE * ICmpTerritoryManager::NAVCELLS_PER_TERRITORY_TILE; i = Clamp((x / scale).ToInt_RoundToNegInfinity(), 0, w - 1); j = Clamp((z / scale).ToInt_RoundToNegInfinity(), 0, h - 1); } void CCmpTerritoryManager::CalculateCostGrid() { if (m_CostGrid) return; CmpPtr cmpPathfinder(GetSystemEntity()); if (!cmpPathfinder) return; pass_class_t passClassTerritory = cmpPathfinder->GetPassabilityClass("default-terrain-only"); pass_class_t passClassUnrestricted = cmpPathfinder->GetPassabilityClass("unrestricted"); const Grid& passGrid = cmpPathfinder->GetPassabilityGrid(); int tilesW = passGrid.m_W / NAVCELLS_PER_TERRITORY_TILE; int tilesH = passGrid.m_H / NAVCELLS_PER_TERRITORY_TILE; m_CostGrid = new Grid(tilesW, tilesH); m_TerritoryTotalPassableCellCount = 0; for (int i = 0; i < tilesW; ++i) { for (int j = 0; j < tilesH; ++j) { NavcellData c = 0; for (u16 di = 0; di < NAVCELLS_PER_TERRITORY_TILE; ++di) for (u16 dj = 0; dj < NAVCELLS_PER_TERRITORY_TILE; ++dj) c |= passGrid.get( i * NAVCELLS_PER_TERRITORY_TILE + di, j * NAVCELLS_PER_TERRITORY_TILE + dj); if (!IS_PASSABLE(c, passClassTerritory)) m_CostGrid->set(i, j, m_ImpassableCost); else if (!IS_PASSABLE(c, passClassUnrestricted)) m_CostGrid->set(i, j, 255); // off the world; use maximum cost else { m_CostGrid->set(i, j, 1); ++m_TerritoryTotalPassableCellCount; } } } } void CCmpTerritoryManager::CalculateTerritories() { if (m_Territories) return; PROFILE("CalculateTerritories"); // If the pathfinder hasn't been loaded (e.g. this is called during map initialisation), // abort the computation (and assume callers can cope with m_Territories == NULL) CalculateCostGrid(); if (!m_CostGrid) return; const u16 tilesW = m_CostGrid->m_W; const u16 tilesH = m_CostGrid->m_H; m_Territories = new Grid(tilesW, tilesH); // Reset territory counts for all players CmpPtr cmpPlayerManager(GetSystemEntity()); if (cmpPlayerManager && (size_t)cmpPlayerManager->GetNumPlayers() != m_TerritoryCellCounts.size()) m_TerritoryCellCounts.resize(cmpPlayerManager->GetNumPlayers()); for (u16& count : m_TerritoryCellCounts) count = 0; // Find all territory influence entities CComponentManager::InterfaceList influences = GetSimContext().GetComponentManager().GetEntitiesWithInterface(IID_TerritoryInfluence); // Split influence entities into per-player lists, ignoring any with invalid properties std::map > influenceEntities; for (const CComponentManager::InterfacePair& pair : influences) { entity_id_t ent = pair.first; CmpPtr cmpOwnership(GetSimContext(), ent); if (!cmpOwnership) continue; // Ignore Gaia and unassigned or players we can't represent player_id_t owner = cmpOwnership->GetOwner(); if (owner <= 0 || owner > TERRITORY_PLAYER_MASK) continue; influenceEntities[owner].push_back(ent); } // Store the overall best weight for comparison Grid bestWeightGrid(tilesW, tilesH); // store the root influences to mark territory as connected std::vector rootInfluenceEntities; for (const std::pair>& pair : influenceEntities) { // entityGrid stores the weight for a single entity, and is reset per entity Grid entityGrid(tilesW, tilesH); // playerGrid stores the combined weight of all entities for this player Grid playerGrid(tilesW, tilesH); u8 owner = static_cast(pair.first); const std::vector& ents = pair.second; // With 2^16 entities, we're safe against overflows as the weight is also limited to 2^16 ENSURE(ents.size() < 1 << 16); // Compute the influence map of the current entity, then add it to the player grid for (entity_id_t ent : ents) { CmpPtr cmpPosition(GetSimContext(), ent); if (!cmpPosition || !cmpPosition->IsInWorld()) continue; CmpPtr cmpTerritoryInfluence(GetSimContext(), ent); - u32 weight = cmpTerritoryInfluence->GetWeight(); + const u32 originWeight = cmpTerritoryInfluence->GetWeight(); u32 radius = cmpTerritoryInfluence->GetRadius(); - if (weight == 0 || radius == 0) + if (originWeight == 0 || radius == 0) continue; - u32 falloff = weight * (Pathfinding::NAVCELL_SIZE * NAVCELLS_PER_TERRITORY_TILE).ToInt_RoundToNegInfinity() / radius; + const u32 relativeFalloff = originWeight * + (Pathfinding::NAVCELL_SIZE * NAVCELLS_PER_TERRITORY_TILE) + .ToInt_RoundToNegInfinity() / radius; CFixedVector2D pos = cmpPosition->GetPosition2D(); u16 i, j; NearestTerritoryTile(pos.X, pos.Y, i, j, tilesW, tilesH); if (cmpTerritoryInfluence->IsRoot()) rootInfluenceEntities.push_back(ent); - // Initialise the tile under the entity - entityGrid.set(i, j, weight); - if (weight > bestWeightGrid.get(i, j)) - { - bestWeightGrid.set(i, j, weight); - m_Territories->set(i, j, owner); - } - // Expand influences outwards - FLOODFILL(i, j, - u32 dg = falloff * m_CostGrid->get(nx, nz); - - // diagonal neighbour -> multiply with approx sqrt(2) - if (nx != posX && nz != posZ) - dg = (dg * 362) / 256; - - // Don't expand if new cost is not better than previous value for that tile - // (arranged to avoid underflow if entityGrid.get(x, z) < dg) - if (entityGrid.get(posX, posZ) <= entityGrid.get(nx, nz) + dg) - continue; - - // weight of this tile = weight of predecessor - falloff from predecessor - u32 newWeight = entityGrid.get(posX, posZ) - dg; - u32 totalWeight = playerGrid.get(nx, nz) - entityGrid.get(nx, nz) + newWeight; - playerGrid.set(nx, nz, totalWeight); - entityGrid.set(nx, nz, newWeight); - // if this weight is better than the best thus far, set the owner - if (totalWeight > bestWeightGrid.get(nx, nz)) + Floodfill({i, j}, {tilesW, tilesH}, [&](const Tile* current, const Tile& neighbour) { - bestWeightGrid.set(nx, nz, totalWeight); - m_Territories->set(nx, nz, owner); - } - ); + const bool diagonalProgression{current && neighbour.x != current->x && + neighbour.z != current->z}; + const u32 falloffPerTile{relativeFalloff * + m_CostGrid->get(neighbour.x, neighbour.z)}; + // diagonal neighbour -> multiply with approx sqrt(2) + const u32 falloff{diagonalProgression ? (falloffPerTile * 362) / 256 : + falloffPerTile}; + + // Don't expand if new cost is not better than previous value for that tile + // (arranged to avoid underflow if entityGrid.get(x, z) < falloff) + if (current && + entityGrid.get(current->x, current->z) <= + entityGrid.get(neighbour.x, neighbour.z) + falloff) + { + return false; + } + + // weight of this tile = weight of predecessor - falloff from predecessor + const u32 weight{current ? entityGrid.get(current->x, current->z) - falloff : + originWeight}; + const u32 totalWeight{weight + (current ? + playerGrid.get(neighbour.x, neighbour.z) - + entityGrid.get(neighbour.x, neighbour.z) : 0)}; + + playerGrid.set(neighbour.x, neighbour.z, totalWeight); + entityGrid.set(neighbour.x, neighbour.z, weight); + // if this weight is better than the best thus far, set the owner + if (totalWeight > bestWeightGrid.get(neighbour.x, neighbour.z)) + { + bestWeightGrid.set(neighbour.x, neighbour.z, totalWeight); + m_Territories->set(neighbour.x, neighbour.z, owner); + } + return true; + }); entityGrid.reset(); } } // Detect territories connected to a 'root' influence (typically a civ center) // belonging to their player, and mark them with the connected flag for (entity_id_t ent : rootInfluenceEntities) { // (These components must be valid else the entities wouldn't be added to this list) CmpPtr cmpOwnership(GetSimContext(), ent); CmpPtr cmpPosition(GetSimContext(), ent); CFixedVector2D pos = cmpPosition->GetPosition2D(); u16 i, j; NearestTerritoryTile(pos.X, pos.Y, i, j, tilesW, tilesH); u8 owner = (u8)cmpOwnership->GetOwner(); - if (m_Territories->get(i, j) != owner) - continue; - - m_Territories->set(i, j, owner | TERRITORY_CONNECTED_MASK); - - if (m_CostGrid->get(i, j) < m_ImpassableCost) - ++m_TerritoryCellCounts[owner]; - - FLOODFILL(i, j, - // Don't expand non-owner tiles, or tiles that already have a connected mask - if (m_Territories->get(nx, nz) != owner) - continue; - m_Territories->set(nx, nz, owner | TERRITORY_CONNECTED_MASK); - if (m_CostGrid->get(nx, nz) < m_ImpassableCost) - ++m_TerritoryCellCounts[owner]; - ); + Floodfill({i, j}, {tilesW, tilesH}, [&](const Tile*, const Tile& neighbour) + { + // Don't expand non-owner tiles, or tiles that already have a connected mask + if (m_Territories->get(neighbour.x, neighbour.z) != owner) + return false; + m_Territories->set(neighbour.x, neighbour.z, owner | TERRITORY_CONNECTED_MASK); + if (m_CostGrid->get(neighbour.x, neighbour.z) < m_ImpassableCost) + ++m_TerritoryCellCounts[owner]; + return true; + }); } // Then recomputes the blinking tiles CmpPtr cmpTerritoryDecayManager(GetSystemEntity()); if (cmpTerritoryDecayManager) { size_t dirtyBlinkingID = m_DirtyBlinkingID; cmpTerritoryDecayManager->SetBlinkingEntities(); m_DirtyBlinkingID = dirtyBlinkingID; } } std::vector CCmpTerritoryManager::ComputeBoundaries() { PROFILE("ComputeBoundaries"); CalculateTerritories(); ENSURE(m_Territories); return CTerritoryBoundaryCalculator::ComputeBoundaries(m_Territories); } u8 CCmpTerritoryManager::GetTerritoryPercentage(player_id_t player) { if (player <= 0 || (m_Territories && static_cast(player) >= m_TerritoryCellCounts.size())) return 0; CalculateTerritories(); // Territories may have been recalculated, check whether player is still there. if (m_TerritoryTotalPassableCellCount == 0 || static_cast(player) >= m_TerritoryCellCounts.size()) return 0; u8 percentage = (m_TerritoryCellCounts[player] * 100) / m_TerritoryTotalPassableCellCount; ENSURE(percentage <= 100); return percentage; } void CCmpTerritoryManager::UpdateBoundaryLines() { PROFILE("update boundary lines"); m_BoundaryLines.clear(); m_DebugBoundaryLineNodes.clear(); if (!CRenderer::IsInitialised()) return; std::vector boundaries = ComputeBoundaries(); CTextureProperties texturePropsBase("art/textures/misc/territory_border.png"); texturePropsBase.SetAddressMode( Renderer::Backend::Sampler::AddressMode::CLAMP_TO_BORDER, Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE); texturePropsBase.SetAnisotropicFilter(true); CTexturePtr textureBase = g_Renderer.GetTextureManager().CreateTexture(texturePropsBase); CTextureProperties texturePropsMask("art/textures/misc/territory_border_mask.png"); texturePropsMask.SetAddressMode( Renderer::Backend::Sampler::AddressMode::CLAMP_TO_BORDER, Renderer::Backend::Sampler::AddressMode::CLAMP_TO_EDGE); texturePropsMask.SetAnisotropicFilter(true); CTexturePtr textureMask = g_Renderer.GetTextureManager().CreateTexture(texturePropsMask); CmpPtr cmpPlayerManager(GetSystemEntity()); if (!cmpPlayerManager) return; for (size_t i = 0; i < boundaries.size(); ++i) { if (boundaries[i].points.empty()) continue; CColor color(1, 0, 1, 1); CmpPtr cmpPlayer(GetSimContext(), cmpPlayerManager->GetPlayerByID(boundaries[i].owner)); if (cmpPlayer) color = cmpPlayer->GetDisplayedColor(); m_BoundaryLines.push_back(SBoundaryLine()); m_BoundaryLines.back().blinking = boundaries[i].blinking; m_BoundaryLines.back().owner = boundaries[i].owner; m_BoundaryLines.back().color = color; m_BoundaryLines.back().overlay.m_SimContext = &GetSimContext(); m_BoundaryLines.back().overlay.m_TextureBase = textureBase; m_BoundaryLines.back().overlay.m_TextureMask = textureMask; m_BoundaryLines.back().overlay.m_Color = color; m_BoundaryLines.back().overlay.m_Thickness = m_BorderThickness; m_BoundaryLines.back().overlay.m_Closed = true; SimRender::SmoothPointsAverage(boundaries[i].points, m_BoundaryLines.back().overlay.m_Closed); SimRender::InterpolatePointsRNS(boundaries[i].points, m_BoundaryLines.back().overlay.m_Closed, m_BorderSeparation); std::vector& points = m_BoundaryLines.back().overlay.m_Coords; for (size_t j = 0; j < boundaries[i].points.size(); ++j) { points.push_back(boundaries[i].points[j]); if (m_EnableLineDebugOverlays) { const size_t numHighlightNodes = 7; // highlight the X last nodes on either end to see where they meet (if closed) SOverlayLine overlayNode; if (j > boundaries[i].points.size() - 1 - numHighlightNodes) overlayNode.m_Color = CColor(1.f, 0.f, 0.f, 1.f); else if (j < numHighlightNodes) overlayNode.m_Color = CColor(0.f, 1.f, 0.f, 1.f); else overlayNode.m_Color = CColor(1.0f, 1.0f, 1.0f, 1.0f); overlayNode.m_Thickness = 0.1f; SimRender::ConstructCircleOnGround(GetSimContext(), boundaries[i].points[j].X, boundaries[i].points[j].Y, 0.1f, overlayNode, true); m_DebugBoundaryLineNodes.push_back(overlayNode); } } } } void CCmpTerritoryManager::Interpolate(float frameTime, float UNUSED(frameOffset)) { m_AnimTime += frameTime; if (m_BoundaryLinesDirty) { UpdateBoundaryLines(); m_BoundaryLinesDirty = false; } for (size_t i = 0; i < m_BoundaryLines.size(); ++i) { if (m_BoundaryLines[i].blinking) { CColor c = m_BoundaryLines[i].color; c.a *= 0.2f + 0.8f * fabsf((float)cos(m_AnimTime * M_PI)); // TODO: should let artists tweak this m_BoundaryLines[i].overlay.m_Color = c; } } } void CCmpTerritoryManager::RenderSubmit(SceneCollector& collector, const CFrustum& frustum, bool culling) { if (!m_Visible) return; for (size_t i = 0; i < m_BoundaryLines.size(); ++i) { if (culling && !m_BoundaryLines[i].overlay.IsVisibleInFrustum(frustum)) continue; collector.Submit(&m_BoundaryLines[i].overlay); } for (size_t i = 0; i < m_DebugBoundaryLineNodes.size(); ++i) collector.Submit(&m_DebugBoundaryLineNodes[i]); } player_id_t CCmpTerritoryManager::GetOwner(entity_pos_t x, entity_pos_t z) { u16 i, j; if (!m_Territories) { CalculateTerritories(); if (!m_Territories) return 0; } NearestTerritoryTile(x, z, i, j, m_Territories->m_W, m_Territories->m_H); return m_Territories->get(i, j) & TERRITORY_PLAYER_MASK; } std::vector CCmpTerritoryManager::GetNeighbours(entity_pos_t x, entity_pos_t z, bool filterConnected) { CmpPtr cmpPlayerManager(GetSystemEntity()); if (!cmpPlayerManager) return std::vector(); std::vector ret(cmpPlayerManager->GetNumPlayers(), 0); CalculateTerritories(); if (!m_Territories) return ret; u16 i, j; NearestTerritoryTile(x, z, i, j, m_Territories->m_W, m_Territories->m_H); // calculate the neighbours player_id_t thisOwner = m_Territories->get(i, j) & TERRITORY_PLAYER_MASK; u16 tilesW = m_Territories->m_W; u16 tilesH = m_Territories->m_H; // use a flood-fill algorithm that fills up to the borders and remembers the owners Grid markerGrid(tilesW, tilesH); - markerGrid.set(i, j, true); - FLOODFILL(i, j, - if (markerGrid.get(nx, nz)) - continue; - // mark the tile as visited in any case - markerGrid.set(nx, nz, true); - int owner = m_Territories->get(nx, nz) & TERRITORY_PLAYER_MASK; - if (owner != thisOwner) - { - if (owner == 0 || !filterConnected || (m_Territories->get(nx, nz) & TERRITORY_CONNECTED_MASK) != 0) - ret[owner]++; // add player to the neighbour list when requested - continue; // don't expand non-owner tiles further - } - ); + Floodfill({i, j}, {tilesW, tilesH}, [&](const Tile*, const Tile& neighbour) + { + if (markerGrid.get(neighbour.x, neighbour.z)) + return false; + // mark the tile as visited in any case + markerGrid.set(neighbour.x, neighbour.z, true); + int owner = m_Territories->get(neighbour.x, neighbour.z) & TERRITORY_PLAYER_MASK; + if (owner != thisOwner) + { + if (owner == 0 || !filterConnected || (m_Territories->get(neighbour.x, neighbour.z) & TERRITORY_CONNECTED_MASK) != 0) + ret[owner]++; // add player to the neighbour list when requested + return false; // don't expand non-owner tiles further + } + return true; + }); return ret; } bool CCmpTerritoryManager::IsConnected(entity_pos_t x, entity_pos_t z) { u16 i, j; CalculateTerritories(); if (!m_Territories) return false; NearestTerritoryTile(x, z, i, j, m_Territories->m_W, m_Territories->m_H); return (m_Territories->get(i, j) & TERRITORY_CONNECTED_MASK) != 0; } void CCmpTerritoryManager::SetTerritoryBlinking(entity_pos_t x, entity_pos_t z, bool enable) { CalculateTerritories(); if (!m_Territories) return; u16 i, j; NearestTerritoryTile(x, z, i, j, m_Territories->m_W, m_Territories->m_H); u16 tilesW = m_Territories->m_W; u16 tilesH = m_Territories->m_H; player_id_t thisOwner = m_Territories->get(i, j) & TERRITORY_PLAYER_MASK; - u8 bitmask = m_Territories->get(i, j); - u8 blinking = bitmask & TERRITORY_BLINKING_MASK; - if (enable && !blinking) - m_Territories->set(i, j, bitmask | TERRITORY_BLINKING_MASK); - else if (!enable && blinking) - m_Territories->set(i, j, bitmask & ~TERRITORY_BLINKING_MASK); - - FLOODFILL(i, j, - bitmask = m_Territories->get(nx, nz); - if ((bitmask & TERRITORY_PLAYER_MASK) != thisOwner) - continue; - blinking = bitmask & TERRITORY_BLINKING_MASK; - if (enable && !blinking) - m_Territories->set(nx, nz, bitmask | TERRITORY_BLINKING_MASK); - else if (!enable && blinking) - m_Territories->set(nx, nz, bitmask & ~TERRITORY_BLINKING_MASK); - else - continue; - ); + Floodfill({i, j}, {tilesW, tilesH}, [&](const Tile*, const Tile& neighbour) + { + const u8 bitmask{m_Territories->get(neighbour.x, neighbour.z)}; + if ((bitmask & TERRITORY_PLAYER_MASK) != thisOwner) + return false; + const bool blinking{(bitmask & TERRITORY_BLINKING_MASK) != 0}; + if (enable != blinking) + { + m_Territories->set(neighbour.x, neighbour.z, enable ? + bitmask | TERRITORY_BLINKING_MASK : bitmask & ~TERRITORY_BLINKING_MASK); + return true; + } + return false; + }); ++m_DirtyBlinkingID; m_BoundaryLinesDirty = true; } bool CCmpTerritoryManager::IsTerritoryBlinking(entity_pos_t x, entity_pos_t z) { CalculateTerritories(); if (!m_Territories) return false; u16 i, j; NearestTerritoryTile(x, z, i, j, m_Territories->m_W, m_Territories->m_H); return (m_Territories->get(i, j) & TERRITORY_BLINKING_MASK) != 0; } void CCmpTerritoryManager::UpdateColors() { m_ColorChanged = true; CmpPtr cmpPlayerManager(GetSystemEntity()); if (!cmpPlayerManager) return; for (SBoundaryLine& boundaryLine : m_BoundaryLines) { CmpPtr cmpPlayer(GetSimContext(), cmpPlayerManager->GetPlayerByID(boundaryLine.owner)); if (!cmpPlayer) continue; boundaryLine.color = cmpPlayer->GetDisplayedColor(); boundaryLine.overlay.m_Color = boundaryLine.color; } } TerritoryOverlay::TerritoryOverlay(CCmpTerritoryManager& manager) : TerrainTextureOverlay((float)Pathfinding::NAVCELLS_PER_TERRAIN_TILE / ICmpTerritoryManager::NAVCELLS_PER_TERRITORY_TILE), m_TerritoryManager(manager) { } void TerritoryOverlay::BuildTextureRGBA(u8* data, size_t w, size_t h) { for (size_t j = 0; j < h; ++j) { for (size_t i = 0; i < w; ++i) { SColor4ub color; u8 id = (m_TerritoryManager.m_Territories->get((int)i, (int)j) & ICmpTerritoryManager::TERRITORY_PLAYER_MASK); color = GetColor(id, 64); *data++ = color.R; *data++ = color.G; *data++ = color.B; *data++ = color.A; } } } - -#undef FLOODFILL